ACOUSTIC TEST REPORT, WTG S29

Version 02
Amherst Island Wind Project
Amherst Island, ON

Report Number: 01800287.007
Project Number: 01800287

Prepared for:
Windlectric Inc.
354 Davis Road
Oakville, ON
L6J 2X1

Prepared by

Digitally signed by Nathan Gara DN: $\mathrm{cn}=$ Nathan Gara, $\mathrm{o}=\mathrm{HGC}$ Engineering, ou,
email=ngara@hgcengineering.co $\mathrm{m}, \mathrm{c}=\mathrm{CA}$
Date: 2019.01.09 14:42:51-05'00'
Nathan Gara, C.E.T.

	by
Ian	边
Bonsma	

Ian R. Bonsma, PEng

January 9, 2019

This Test Report shall not be reproduced except in full, without the written approval of HGC Engineering.
HGC Engineering is accredited by the Standards Council of Canada for IEC 61400-11 testing.

VERSION CONTROL

Version	Date	Version Description
01	December 14, 2018	Original Report
02	January 9, 2019	Typographical corrections to Tables 7 and 8, and updated
tonality analysis.		

EXECUTIVE SUMMARY

Howe Gastmeier Chapnik Limited ("HGC Engineering") was retained by Windlectric Inc. to complete an Acoustic Noise test in accordance with IEC 61400-11 of wind turbine generator WTG S29, part of the Amherst Island Wind Project, located on Amherst Island, Ontario. The measurements were completed on December 6, 2018.

HGC Engineering has assessed the acoustic emissions of Wind Turbine Generator S29, a Siemens SWT-3.2-113 wind turbine, rated at 2772 kW , in accordance with IEC 61400-11:2012 (CAN/CSA-C61400-11:13). A summary of the acoustic results are provided in the following tables:

Hub Height Wind Speed [m/s]	$\mathbf{7 . 5}$	$\mathbf{8}$	$\mathbf{8 . 5}$	$\mathbf{9}$	$\mathbf{9 . 5}$	$\mathbf{1 0}$	$\mathbf{1 0 . 5}$	$\mathbf{1 1}^{*}$	$\mathbf{1 1 . 5}^{*}$	$\mathbf{1 2}^{*}$	$\mathbf{1 2 . 5}^{*}$
Sound Power Level LwA,K in dB(A)	$\mathbf{1 0 2 . 0}$	$\mathbf{1 0 3 . 6}$	$\mathbf{1 0 4 . 1}$	$\mathbf{1 0 4 . 4}$	$\mathbf{1 0 4 . 3}$	$\mathbf{1 0 4 . 2}$	$\mathbf{1 0 3 . 7}$	$\mathbf{1 0 3 . 7}$	$\mathbf{1 0 4 . 0}$	$\mathbf{1 0 3 . 6}$	$\mathbf{1 0 3 . 6}$
Tonal Audibility, LLak in dB: $^{\text {Pa }}$	<-3.0	-1.7	-0.7	-0.2	-0.1	-1.3	-2.7	-2.7	<-3.0	-2.6	-1
Total Uncertainty uLWA,k in dB:	0.8	0.7	0.7	0.8	0.8	0.7	0.7	0.7	0.8	0.8	0.8

* Above allowed range of power curve.

10 m Height Wind Speed [m / s]	6	7*	8*
Sound Power Level $\mathrm{Lwa}_{\text {w }, \mathrm{k}}$ in $\mathrm{dB}(\mathrm{A})$:	104.5	104.3	104
Total Uncertainty $\mathrm{u}_{\mathrm{LW}, \mathrm{k}, \mathrm{k}}$ in dB:	0.7	0.7	0.9

* Above allowed range of power curve.

NOISE

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3
1 INTRODUCTION 5
2 WIND TURBINE GENERATOR 5
3 TEST ENVIRONMENT 7
4 INSTRUMENTATION AND SETUP. 7
4.1 Type B Uncertainties 9
5 MEASUREMENTS AND RESULTS 10
6 CONCLUSIONS 13
REFERENCES 14
Figure 1: Location of Test Turbine
Figure 2: Reference Electrical Power Curve
Figure 3: Acoustic Noise Measurement of the Wind Turbine Generator
Figure 4: Total Noise vs. Electrical Power
Figure 5: Measured Wind Speed vs. Derived Wind Speed
Figure 6: Apparent Sound Power Level vs. Wind Speed
APPENDIX A - Location Photos
APPENDIX B - Calibration Certificates
APPENDIX C - Octave Band Sound Level Results
APPENDIX D - Tonality Assessment Results

NOISE

1 INTRODUCTION

Howe Gastmeier Chapnik Limited ("HGC Engineering") was retained by Windlectric Inc. to complete sound level measurements (Emission Audit) of Wind Turbine Generator S29 ("WTG S29") in order to determine the sound power level of the turbine. The turbine is part of the Amherst Island Wind Project which includes 26 Siemens wind turbines of various generation capacities, each with a hub height of 99.5 m , with an overall project nameplate capacity of 74.3 MW. Measurements were completed on December 6, 2018. Figure 1 shows the location of the wind turbine generator.

This report summarizes measurements that were completed in accordance with IEC Standard 6140011 "Wind turbine generator systems - Part 11: Acoustic Noise Measurement Techniques". The CAN/CSA-C61400-11:13 standard is an adoption without modification of the identically titled IEC Standard IEC 61400-11:2012 [1].

2 WIND TURBINE GENERATOR

The wind turbine generator is manufactured by Siemens and is the SWT-3.2-113 model, rated at 2772 kW with a rotor diameter of 113 m and a hub height of 99.5 m . This turbine is an upwind, pitch controlled, horizontal axis wind turbine with three blades. Specific details of the wind turbine generator are included in Table 1.

Table 1: Wind Turbine Generator Characteristics

Wind Turbine					
Manufacturer	Siemens				
Model Number	SWT 3.2-113				
Serial Number	S29				
Hub Height	99.5 m				
Tower Type (lattice or tube)	Tubular				
Horizontal Distance from Rotor Centre to Tower Axis	5.5 m				
Rotor Diameter	113 m				
Speed (constant or variable)	Variable				
	$6 \mathrm{~m} / \mathrm{s}$	$7 \mathrm{~m} / \mathrm{s}$	$8 \mathrm{~m} / \mathrm{s}$	$9 \mathrm{~m} / \mathrm{s}$	$10 \mathrm{~m} / \mathrm{s}$
Pitch Angle	Confidential				
Rotational Speed	Confidential				
Rated Power Output	2772 kW				
Control Software Version	133.0.0.6				
Rotor Details					
Rotor Control Devices	Pitch Control				
Presence of Votex Generators, Stall Strips Trailing Edges	Vortex Generators and Dino Tails				
Blade Type	B55				
Serial Number			$\begin{aligned} & 5502488 \\ & 5503415 \\ & 5503438 \end{aligned}$		
Gearbox					
Manufacturer	N/A - Direct Drive				
Model Number	N/A - Direct Drive				
Serial Number	N/A - Direct Drive				
Generator					
Manufacturer	Siemens				
Model Number	DD22_02				
Serial Number	5100229927				
UTM Coordinates					
Easting	359562				
Northing	4889909				

The electrical power curve utilized for the sound level measurements is shown in Figure 2. From the supplied power curve, 85% of maximum electrical power is reached at 2356 kW or at a hub height wind speed of $9.5 \mathrm{~m} / \mathrm{s}$. The required minimum wind speeds for reporting is from 0.8 to 1.3 times the wind speed at 85% electrical power which is 7.5 to $12.5 \mathrm{~m} / \mathrm{s}$ for this wind turbine.

3 TEST ENVIRONMENT

WTG S29 is part of the Amherst Island Wind Project located on Amherst Island, Ontario. Figure 1 shows the specific location of WTG S29. The surrounding land is used mainly for livestock grazing and includes gently rolling terrain. The area surrounding WTG S29 included agriculture fields with short grass. The sound level measurement location was in an area with recently grazed grass.

There are a number of additional wind turbine generators located in the vicinity of the test turbine. WTG S01 is located approximately 530 m to the southwest. Additional turbines are located more than 850 m away. WTG S01, part of the Amherst Island Wind Project, was parked during the testing of WTG S29.

The sound level measurement location was established at 156 m from the base of the turbine. This distance was determined utilizing the reference distance calculation provided in IEC 61400; $\mathrm{R}_{0}=\mathrm{H}+$ $\mathrm{D} / 2 \pm 20 \%$ where H is the hub height and D is the rotor diameter. An R_{1} distance of 192 m was determined for this test using the equation:

$$
R_{1}=\sqrt{\left(D_{1}+D_{2}+D_{3}\right)^{2}+{H_{h u b}}^{2}}
$$

Where D_{1} is the distance from turbine base to the microphone (156 m), D_{2} is the tower radius (2.15 m), D_{3} is the distance from rotor to tower axis (5.5 m) and $H_{h u b}$ is the hub height (99.5 m). Photos of the sound level measurement location, the test turbine, and wind mast location are included under Appendix A.

4 INSTRUMENTATION AND SETUP

A Wolfel RoBin measurement system was utilized to complete the IEC measurements. Sound pressure level measurements and recordings were completed utilizing a 01 dB DUO Smart Noise

Monitor. The microphone was mounted on a one metre diameter board with a primary and secondary windscreen. A standard Bruel \& Kjaer 3" wind screen (half) was used on the microphone as well as a secondary Bruel \& Kjaer UA-2133 wind screen. The influence of the secondary windscreen is shown in Table 2. The acoustic influence of the secondary windscreen contributes approximately 0.2 dBA to the overall sound level and the sound levels have been corrected herein.

Table 2: Frequency Dependent Influence for UA-2133 Windscreen

Frequency [Hz]	SPL Influence [dB]	Frequency [Hz]	SPL Influence [dB]
100	-0.07	1600	-0.3
125	0.06	2000	-0.03
160	0.01	2500	-0.12
200	0.18	3150	-0.25
250	-0.03	4000	-0.73
315	-0.25	5000	-0.5
400	-0.26	6300	-0.03
500	-0.18	8000	-0.99
630	0.04	10000	-0.77
800	-0.14	12500	-0.75
1000	-0.44	16000	-1.23
1250	-0.14	20000	-0.59

The RoBin and DUO systems were time synchronized prior to the start of the measurements (within 1 second).

For the measurements, the electrical power, rotor RPM, azimuth and hub height wind speeds were provided by the customer as analogue signals and were directly connected into the RoBin system.

Wind speed and direction at 10 m height were measured utilizing a Vaisala ultrasonic anemometer while a Reinhardt DFT485 sensor was utilized to measure air pressure, temperature and air humidity. Table 3 shows the weather conditions during the measurement periods.

Table 3: Weather Conditions

	December 6, 2018	
	Start of Test	End of Test
Air Temperature $\left({ }^{\circ} \mathbf{C}\right)$	0	2
Air Pressure (hPa)	1005	1003
Relative Humidity [\%]	85	73
Sky Condition	Overcast	
Range of Wind Direction $\left({ }^{\circ}\right)$	285 to 300	

The measurement equipment and the relevant calibration information are shown in Table 4.
Table 4: Instrumentation

Instrumentation	Manufacturer / Model / Serial Number	Calibration Date
Measurement System	Wolfel / RoBin / ROBIN.00.0003	NA
Sound Level Meter	01 dB-Metravib / DUO / 12023	March 2, 2018
Microphone	GRAS / 40CD / 224382	March 2, 2018
Anemometer	Vaisala / WMT701 / J3920012	August 21, 2018
Air Pressure / Temperature and Humidity	Reinhardt / DFT485 / 1027951	August 29, 2018
Acoustic Calibrator	Bruel \& Kjaer / 4231 / 3010241	March 1, 2018
Primary Wind Screen	Bruel \& Kjaer	NA
Secondary Wind Screen and Ground Board	Bruel \& Kjaer / UA 2133	NA
Noisy Software	Wolfel / Noisy Version 2018	NA

Correct calibration of the acoustic instrumentation was verified using an acoustic calibrator manufactured by Brüel \& Kjær. Verification of calibration status was carried out at the start and end of the measurement period and when the microphone was disconnected from the sound level meter. Calibration certificates for the test equipment are provided in Appendix B. The same equipment was utilized during the entire test period unless otherwise indicated.

During testing, the anemometer was located 279 m west of the turbine at 10 m above grade.

The standard roughness length applicable for this site is 0.05 given the surrounding farmland with some vegetation.

Sound level measurements were completed with the turbine operational and with the turbine parked. Significant interfering sound from road traffic, aircraft, bird calls, local agricultural activity, etc. was not included in the analyzed data for either the turbine on or off condition. The microphone position was maintained to be within $+/-15^{\circ}$ of the downwind direction through visual inspection and the recording of the azimuth position. Downwind directions ranged between 285° and 300°.

4.1 TYPE B UNCERTAINTIES

The uncertainty components of Type B are provided in Table 5. Additional one-third octave Type B uncertainty components for the instrument and wind screen insertion loss can be provided upon request. These uncertainty components are provided by the instrument manufacturers.

Table 5: Type B Uncertainty Components

Component	Value
Calibration, $u_{\mathrm{B} 1}$	0.2 dB
Instrument, $u_{\mathrm{B} 2}$	$0.2-0.5 \mathrm{~dB}$
Board, $u_{\mathrm{B} 3}$	0.3 dB
Wind screen insertion loss, $u_{\mathrm{B} 4}$	$0.1-0.5 \mathrm{~dB}$
Distance and Direction, u_{B}	0.1 dB
Air Absorption, $u_{\mathrm{B} 6}$	0.2 dB
Weather Conditions, $u_{\mathrm{B} 7}$	0.5 dB
Wind Speed, Measured, $u_{\mathrm{B} 8}$	$0.7 \mathrm{~m} / \mathrm{s}$
Wind Speed Derived, $u_{\mathrm{B} 8}$	$0.3 \mathrm{~m} / \mathrm{s}$
Wind Speed, Power Curve, $u_{\mathrm{B} 9}$	$0.2 \mathrm{~m} / \mathrm{s}$

The uncertainty associated with the electrical power transducer (derived wind speed, $u_{\mathrm{B} 8}$) has been increased to $0.3 \mathrm{~m} / \mathrm{s}$ as the electrical power signal was provided by the manufacturer. The manufacturer has indicated a measurement chain uncertainty of 1% on the measured electrical power, which corresponds to approximately $0.05 \mathrm{~m} / \mathrm{s}$. An increase of $0.1 \mathrm{~m} / \mathrm{s}$, over the typical standard uncertainty, has been included for the derived wind speed uncertainty.

5 MEASUREMENTS AND RESULTS

Sound level measurements were conducted of WTG S29 on December 6, 2018, between 9:00 and 15:30. Temperature and other weather characteristics are reported in Table 3 above.

The data points where the turbine was operating at or below the allowed power curve range are identified as the allowed range (intervals on the electrical power curve where no duplicated values exist and the slope of the power curve including the uncertainty is positive). For data within the allowed range of the electrical power curve the wind speed $\left(V_{P, n}\right)$ is determined. The average value of the ratio between the derived wind speed from the electrical power curve and the measured nacelle wind speed $\left(V_{\mathrm{nac}, \mathrm{m}}\right), k_{\mathrm{nac}}$ is determined. $k_{\mathrm{nac}}=\frac{V_{\mathrm{nac}, \mathrm{n}}}{V_{\mathrm{nac}, \mathrm{m}}}$. For this data set the k_{nac} value of 0.92 was applied to the measured nacelle wind speed to derive the normalized wind speed outside the allowed range.

For background noise measurements, the measured 10 m wind speed $\left(V_{Z, m}\right)$ and the wind speed derived from the power curve $V_{\mathrm{P}, \mathrm{n}}$ are utilized to determine $k_{\mathrm{z}} . k_{\mathrm{Z}}=\frac{V_{\mathrm{P}, \mathrm{n}}}{V_{Z, \mathrm{~m}}}$. For this data set, the k_{Z} value of 1.36 , was applied to the measured 10 m wind speed $\left(V_{Z, m}\right)$ to derive the normalised wind speed at hub height ($V_{\mathrm{B}, \mathrm{n}}$) during background noise measurements.

Figure 3 shows the sound pressure level at the measurement location versus the hub height wind speed. Blue circles represent sound level data points collected with the turbine operating in the allowed range, above this point the sound levels are shown as black squares. Magenta triangles indicate data points of the background sound level (turbine off).

Figure 4 shows the measured total noise versus electrical power. Figure 5 plots the wind speed determined from the electrical power curve $\left(\mathrm{V}_{\mathrm{p}}\right)$ relative to the measured nacelle wind speed $\left(\mathrm{V}_{\text {nac,m }}\right)$ and 10 m met mast wind speed $\left(\mathrm{V}_{\mathrm{z}, \mathrm{m}}\right)$.

Table 6 summarizes the analysis of the measured results.

Table 6: Sound Level Data

Hub Height Wind Speed [m/s]	7.5	8	8.5	9	9.5	10	10.5	11*	11.5*	12*	12.5*
Collected Data Points, Total	48	49	59	71	89	50	73	106	56	36	23
Collected Data Points, Background	13	23	26	55	44	46	52	54	20	23	20
Average Wind Speed, V_{K}	7.5	8.0	8.5	9.0	9.5	9.9	10.5	10.9	11.5	12.0	12.5
Total Noise, $\mathrm{Lv}_{\mathrm{v}, \mathrm{T}, \text { in } \mathrm{dB}(\mathrm{A})}$	51.8	53.3	53.8	54.0	53.9	53.9	53.4	53.4	53.7	53.3	53.4
Background Noise, $\mathrm{Lv}_{\mathrm{V}, \mathrm{B}}$ in dB(A)	41.5	41.9	41.7	41.7	42.2	41.6	41.9	42.1	42.4	42.6	42.1
Difference T-B, dB(A)	10.3	11.4	12.0	12.2	11.7	12.2	11.5	11.3	11.3	10.8	11.3
Corrected $\mathrm{L}_{\text {Aeq, }}$, in $\mathrm{dB}(\mathrm{A})$	51.4	53.0	53.5	53.7	53.6	53.6	53.1	53.1	53.3	52.9	53.1

* Above allowed range of power curve.

Table 6 shows that at least 180 measurements were collected for both total noise and background noise and at least 10 measurements or data points are included in the analysis for each wind speed bin for total noise, as required by IEC 61400-11.

Table 7 shows the calculated sound level data, the resulting sound power levels, tonality and measurement uncertainty at hub height, while Table 8 shows the apparent sound power levels at a reference height of 10 m . Figure 6 presents the apparent sound power level at the integer wind speeds.

Table 7: Apparent Sound Power Level of WTG S29 at Hub Height

Hub Height Wind Speed [m/s]	7.5	8	8.5	9	9.5	10	10.5	11*	11.5*	12*	12.5*
Corrected $\mathrm{L}_{\text {Aeq }}$, in $\mathrm{dB}(\mathrm{A})$	51.4	53.0	53.5	53.7	53.6	53.6	53.1	53.1	53.3	52.9	53.1
Sound Power Level Lwa,k in dB(A)	102.0	103.6	104.1	104.4	104.3	104.2	103.7	103.7	104.0	103.6	103.6
Tonal Audibility, $\Delta \mathrm{L}_{\mathrm{ak}}$ in dB:	<-3.0	-1.7	-0.7	-0.2	-0.1	-1.3	-2.7	-2.7	<-3.0	-2.6	-1
Total Uncertainty $\mathrm{u}_{\mathrm{LWA}, \mathrm{k}}$ in dB :	0.8	0.7	0.7	0.8	0.8	0.7	0.7	0.7	0.8	0.8	0.8

* Above allowed range of power curve.

NOISE

Table 8: Apparent Sound Power Level at 10 m Height

$\mathbf{1 0} \mathbf{m}$ Height Wind Speed $[\mathrm{m} / \mathbf{s}$]	$\mathbf{6}$	$\mathbf{7 *}^{*}$	$\mathbf{8}^{*}$
Sound Power Level $\mathrm{L}_{\mathrm{WA}, \mathrm{k}}$ in $\mathrm{dB}(\mathrm{A}):$	104.5	104.3	104.0
Total Uncertainty $\mathrm{u}_{\mathrm{LW}, \mathrm{k}}$ in dB:	0.7	0.7	0.9

* Above allowed range of power curve.

A table and plot of the sound pressure spectrum in third octaves for each integer wind speed are included under Appendix C.

The tonality assessment indicates no tonal audibility greater than or equal to 0 dB . The average narrowband spectra used in the tonality assessment are included under Appendix D.

6 CONCLUSIONS

The measurements and analysis, performed in accordance with the methods prescribed in IEC Standard 61400-11:2012 indicate that the sound power level of WTG S29, rated at 2772 kW and part of the Amherst Island Wind Project, has the following sound power levels:

Table 9: Sound Power Level Summary

Hub Height Wind Speed [m/s]	7.5	$\mathbf{8}$	$\mathbf{8 . 5}$	$\mathbf{9}$	$\mathbf{9 . 5}$	$\mathbf{1 0}$	$\mathbf{1 0 . 5}$	$\mathbf{1 1 *}$	$\mathbf{1 1 . 5}$	$\mathbf{1 2}^{*}$	$\mathbf{1 2 . 5}^{*}$
Sound Power Level LwA,K in dB(A)	$\mathbf{1 0 2 . 0}$	$\mathbf{1 0 3 . 6}$	$\mathbf{1 0 4 . 1}$	$\mathbf{1 0 4 . 4}$	$\mathbf{1 0 4 . 3}$	$\mathbf{1 0 4 . 2}$	$\mathbf{1 0 3 . 7}$	$\mathbf{1 0 3 . 7}$	$\mathbf{1 0 4 . 0}$	$\mathbf{1 0 3 . 6}$	$\mathbf{1 0 3 . 6}$
Tonal Audibility, $\Delta L_{\text {ak }}$ in dB:	<-3.0	-1.7	-0.7	-0.2	-0.1	-1.3	-2.7	-2.7	<-3.0	-2.6	-1
Total Uncertainty uLwA,k in dB:	0.8	0.7	0.7	0.8	0.8	0.7	0.7	0.7	0.8	0.8	0.8

* Above allowed range of power curve.

The sound levels presented above are relevant for Siemens SWT-3.2-113 turbine WTG S29 given the environmental conditions and the operating parameters of the turbine during the testing periods.

NOISE

REFERENCES

1. International Electrotechnical Commission, 61400-11:2012 Wind turbine generator systems Part 11: Acoustic noise measurement techniques.
2. Google Maps Aerial Imagery, Internet Application: maps.google.com

Figure 1 - Location of Test Turbine S29

Figure 2: Reference Electrical Power Curve
WTG S29, 2772 kW, Amherst Island Wind Project, Ontario

NOISE

Figure 3: Acoustic Noise Measurements of the Wind Turbine Generator

NOISE

Figure 4: Total Sound Level [dBA] vs. Electrical Power [kW] WTG S29, 2772 kW, Amherst Island Wind Project, Ontario

NOISE

Figure 5: Measured Wind Speed (Nacelle and 10 m) vs. Derived Wind Speed

Figure 6: Apparent Sound Power Level vs. Wind Speed WTG S29, 2772 kW, Amherst Island Wind Project, Ontario

NOISE
VIBRATION

APPENDIX A:

LOCATION PHOTOS

"
"Sn

Meteorological Tower Location - December 6, 2018

Sound Level Measurement Location - December 6, 2018

Sound Level Microphone on Board - December 6, 2018

Photos of Sound Level Meter and Meteorological Tower Taken from the Base of WTG S29

- December 6, 2018

APPENDIX B:

 CALIBRATION CERTIFICATES"
NOISE

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No. 40217 n 6

Instrument:
Model:
Manufacturer:
Serial number:
Class (IEC 60942):
Barometer type:
Barometer s / n :
Customer:
Tel/Fax:
Acoustical Calibrator
4231
Brüel and Kjær
3010241
1
HGC Engineering
905-826-4044 /

Date Calibrated: 3/1/2018 Cal Due:

Status:	Received	Sent
In tolerance:	X	X
Out of tolerance:		
See comments:		

Contains non-accredited tests: __Yes X No

Address: 2000 Argentia Road, Plaza One
Suite 203
Mississauga, Ontario, Canada L5N 1P7

Tested in accordance with the following procedures and standards:
Calibration of Acoustical Calibrators, Scantek Inc., Rev. 10/1/2010

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	5/N	Cal. Date	Traceability evidence	Cal. Due
				Cal. Lab / Accreditatlon	
4838-Norsonic	SME Cal Unit	31061	Jul 28, 2017	Scantek, Inc./ NVLAP	Jul 28, 2018
DS-360-SRS	Function Generator	88077	Sep 15, 2016	ACR Env. / A2LA	Sep 15, 2018
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 20, 2017	ACR Env. / A2LA	Sep 20, 2018
HM30-Thommen	Meteo Station	1040170/39633	Oct 25, 2017	ACR Env./ A2LA	Oct 25, 2018
140-Norsonic	Real Time Analyzer	1403978	Mar 22, 2017	Scantek, Inc. / NVLAP	Mar 22, 2018
PC Program 1018 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-
4192-Brüel\&Kjær	Microphone	2854675	Nov 11, 2017	Scantek, Inc. / NVLAP	Nov 11, 2018
1203-Norsonic	Preamplifier	92268	Oct 18, 2017	Scantek, Inc./ NVLAP	Oct 18, 2018

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)

Calibrated by:	Jeremy	Authorized signatory:	Steven E. Marshal
Signature	musfardx	Signature	Ltame El
Date	(1)31/18	Date	$3 / 3 / 2018$
			3/

[^0]
Scantelh, Inc.

CALIBRATION LABORATORY
ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No. 40222

Instrument:	Microphone
Model:	40CD
Manufacturer:	GRAS
Serial number:	224382
Composed of:	
Customer:	HGC Engineering
Tel/Fax:	905-826-4044/

Date Calibrated: 3/2/2018 Cal Due: 6/ lar 2018 Status:
In tolerance:
Out of tolerance:
See comments:
Contains non-accredited tests: __Yes X No
Address:
2000 Argentia Road, Plaza One Suite 203
Mississauga, Ontario, Canada L5N 1P7

Tested in accordance with the following procedures and standards:

Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015
Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	Cal. Due
483B-Norsonlc	SME Cal Unit	31061	Jul 28, 2017	Scantek, Inc./ NVLAP	Jul 28, 2018
DS-360-SRS	Function Generator	88077	Sep 15, 2016	ACR Env./A2LA	Sep 15, 2018
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 20, 2017	ACR Env./A2LA	Sep 20, 2018
HM30-Thommen	Meteo Station	$1040170 / 39633$	Oct 25, 2017	ACR Env./A2LA	Oct 25, 2018
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated	Scantek, Inc.	
1253-Norsonic		Nov 2014	-		
1203-Norsonic	Calibrator	28326	Nov 10,2017	Scantek, Inc./ NVLAP	Nov 10, 2018
4180-Brüel\&Kjær	Preamplifier	92268	Oct 18,2017	Scantek, Inc./ NVLAP	Oct 18, 2018

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	Jaremy Gptwalt	Authorized signatory:	Steven E Marshall
Signature		Signature	* toune Manshall
Date	(1) $3 / 2 / 18$	Date	$3 / 3 / 2018$

[^1]
Scanteh, Inc.
 CALIBRATION LABORATORY

 ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No. 40221

Tested in accordance with the following procedures and standards:
Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015
SLM \& Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011
Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	Cal. Due
				Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31061	Jul 28, 2017	Scantek, Inc./ NVLAP	Jul 28, 2018
DS-360-SRS	Function Generator	88077	Sep 15, 2016	ACR Env./ A2LA	Sep 15, 2018
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 20, 2017	ACR Env./ A2LA	Sep 20, 2018
HM30-Thommen	Meteo Station	1040170/39633	Oct 25, 2017	ACR Env./ A2LA	Oct 25, 2018
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Nov 10, 2017	Scantek, Inc./ NVLAP	Nov 10, 2018

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Barometric pressure (kPa)	Relative Humidity (\%)
22.8	98.91	40.0

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Steven E. Marshall
Signature		Signature	Hewen, EMarshall
Date	OV $3 / 2 / 18$	Date	3/3/2018

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.
Document stored Z:\Calibration Lab\SLM 2018\01dBDuo_12023_M1.doc

REINHARDT System- und Messelectronic GmbH

Typ/Gegenstand Type/Object	DFT-485
Hersteller Manufacturer	REINHARDT System- und Messelectronic GmbH
Seriennummer Serial Number	1027951
Inventarnummer Inventory Number	---
Auftraggeber Customer	HGC Engineering 2000 Argentia Road, Plaza 1, Suite 203 Mississauga, ON L5N 1P7 - CANADA

25 Sopt 2017
Dieser Kalibrierschein dokumentiert die Rückführung auf nationale Normale zur Darstellung der Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI).
Sie wurde in Übereinstimmung mit den Normen DIN EN ISO 9000ff und DIN ISO 10012 durchgeführt.
Fürdie Einhaltungeiner angemessenen Frist zur Wiederholung der Kalibrierung ist der Benutzer verantwortlich.

This calibration certficate documents the traceability to national standards which realize the units of measurement according to the International System of Units (SI).
The calibration is performed according to the standards DINENISO9000ff and DIN ISO 10012.
The user is obliged to have the object recalibrated at appropriate intervals.

Kalibrierdatum
Date of Calibration
Prüfer
person in charge

Unterschrift
Nächste Kalibrierung in 24 Monaten
Recalibration in months

Messeinrichtungen
measuring equipment

REINHARDT

System- und Messelectronic GmbH

Kalibrierprotokoll / Calibration Protocol Sensoren und Wetterstationen / Sensors and Weather Stations

25 crep 2017

Sensor/Wetterstation
Sensor/Weather Station

Seriennummer
Serial Number
Abgleichnummer Calibration Number
Firmware-Version
Firmware Version

DFT-485
1027951

025
1.40

Seriennummer Platine/n
Serial Number (Board/s)
Datum 29/08/2017
Date
Prüfer
Calibrated by

V1.7

Harald Stiegelmayer

REINHARDT System- und Messelectronic GmbH Bergstr. 3386911 Diessen-Obermühlhausen
Tel. 08196934100 Fax $7005+1414$ E-Mail: info@reinhardt-testsystem.de www.reinhardt-testsystem.de SOH Wind Engineering LLC

141 Leroy Road • Williston, VT 05495 • USA
Tel 802.316.4368 • Fax 802.735.9106 • www.sohwind.com

CERTIFICATE FOR CALIBRATION OF SONIC ANEMOMETER

Certificate number: 17.US1.07294
Type: Vaisala WMT700 with ROBIN Transmitter
Manufacturer: Vaisala, Oyj, Pl 26, FIN-00421 Helsinki, Finland
Client: HGC Engineering, 2000 Argentia Road, Plaza One, Suite 203, Mississauga, ON L5N 1P7, Canada

Anemometer received: August 21, 2017
Calibrated by: EJF
Certificate prepared by: EJF

Date of issue: August 21, 2017
Serial number: J3920012

Anemometer calibrated: August 21, 2017
Procedure: MEASNET, IEC 61400-12-1:2017 Annex F
Approved by: Calibration engineer, EJF
Calibration equation obtained: $\nu[\mathrm{m} / \mathrm{s}]=1.01170 \cdot \mathrm{f}[\mathrm{m} / \mathrm{s}]+0.00386$
Standard uncertainty, slope: 0.00185
Standard uncertainty, offset: 5.16622
Eic affele
Covariance: - $0.0000350(\mathrm{~m} / \mathrm{s})^{2} / \mathrm{m} / \mathrm{s}$

Absolute maximum deviation: $0.047 \mathrm{~m} / \mathrm{s}$ at $9.126 \mathrm{~m} / \mathrm{s}$
Barometric pressure: $1006.9 \mathrm{hPa} \quad$ Relative humidity: 54.7\% Avg. Direction Output: 179.4

Succession	Velocity	Temperature in		Wind velocity, ν. [m/s]	Anemometer Output, f. [m/s]	Deviation, d. [m/s]	Uncertainty$\begin{gathered} \mathrm{u}_{\mathrm{c}}(\mathrm{k}=2) \\ {[\mathrm{m} / \mathrm{s}]} \\ \hline \end{gathered}$
	pressure, q. [Pa]	wind tunnel $\left[{ }^{\circ} \mathrm{C}\right]$	d.p. box $\left[{ }^{\circ} \mathrm{C}\right]$				
2	9.49	25.6	28.0	4.033	4.0170	-0.034	0.024
4	14.82	25.7	28.0	5.042	5.0059	-0.026	0.025
6	21.48	25.7	28.0	6.070	5.9940	0.002	0.027
8	29.26	25.8	28.0	7.085	6.9913	0.008	0.030
10	38.27	25.8	28.0	8.103	7.9860	0.020	0.033
12	48.54	25.8	28.0	9.126	8.9707	0.047	0.036
13-last	59.87	25.8	28.0	10.136	9.9990	0.016	0.039
11	72.17	25.8	28.0	11.129	10.9840	0.012	0.042
9	86.19	25.8	28.0	12.162	12.0010	0.016	0.045
7	100.79	25.7	28.0	13.151	13.0287	-0.034	0.048
5	117.04	25.7	28.0	14.172	14.0067	-0.003	0.051
3	134.00	25.7	28.0	15.163	14.9827	0.001	0.054
1-first	152.26	25.6	28.0	16.162	15.9963	-0.026	0.057

Page 1 of 2

APPENDIX C: OCTAVE BAND SOUND LEVEL RESULTS

"
NOISE

Bin 7.5: 1/3 Spectra Sound Power in dB(A)

Third Octave Frequency [Hz]

Bin 7.5: 1/3 Spectra Sound Power in dB(A)														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	58.9	63.7	68.0	71.9	75.6	84.4	80.9	82.4	86.9	87.1	86.2	89.6	89.3	88.8
U_{C}	1.0	1.0	1.0	1.0	1.0	0.9	1.6	1.6	0.8	0.8	0.9	0.8	0.9	0.9
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	89.2	91.8	92.2	91.4	91.1	90.3	90.7	92.3	86.7	82.5	77.7	70.7	62.1	[55]
U_{C}	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	1.0	1.3	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

Bin 8: $1 / 3$ Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$

Third Octave Frequency [Hz]

Bin 8: 1/3 Spectra Sound Power in dB(A)														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.2	65.3	69.6	73.4	77.1	84.3	86.4	85.3	88.8	90.6	87.3	90.5	90.4	90.3
U_{C}	0.9	1.0	1.0	1.0	0.9	0.9	1.0	1.1	0.8	0.7	0.9	0.8	0.8	0.8
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	90.8	93.4	93.9	93.3	92.8	92.1	90.8	93.7	89.2	83.6	78.9	71.8	63.3	[55.4]
U_{C}	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	0.9	1.1	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

Bin 8.5: 1/3 Spectra Sound Power in dB(A)

Bin 8.5: 1/3 Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.5	65.9	69.9	73.8	77.4	84.1	87.5	85.8	88.7	92.0	88.0	91.0	90.9	90.9
U_{C}	0.9	1.0	1.0	1.0	0.9	0.9	1.0	0.8	0.8	0.7	0.9	0.8	0.8	0.8
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	91.3	93.9	94.3	93.8	93.2	92.7	91.0	93.9	90.1	84.1	79.4	72.6	63.9	[55.5]
U_{C}	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	0.9	1.1	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

NOISE

Bin 9: $1 / 3$ Spectra Sound Power in dB(A)

Third Octave Frequency [Hz]

Bin 9: 1/3 Spectra Sound Power in dB(A)														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	61.2	66.8	70.4	74.3	78.0	84.6	88.5	85.5	89.2	92.8	88.9	91.7	91.4	91.3
U_{C}	1.0	1.0	1.0	1.0	0.9	0.9	0.9	1.0	0.8	0.7	0.9	0.8	0.8	0.8
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	91.4	94.1	94.4	93.8	93.2	92.6	91.0	93.8	90.1	84.4	79.5	72.7	64.0	[55.5]
U_{c}	0.8	0.8	0.7	0.7	0.7	0.7	0.8	0.7	0.7	0.8	1.0	1.0	1.2	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

Bin 9.5: 1/3 Spectra Sound Power in dB(A)

Third Octave Frequency [Hz]

Bin 9.5: 1/3 Spectra Sound Power in dB(A)														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	61.2	67.2	70.2	74.1	77.7	84.4	87.8	84.8	89.6	92.6	89.1	91.7	91.2	91.1
UC	1.0	1.0	1.0	1.0	0.9	0.9	1.0	1.1	0.8	0.7	0.9	0.8	0.9	0.8
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	91.3	93.9	94.2	93.7	93.1	92.6	91.2	94.0	90.3	84.6	79.8	73.1	64.5	$[55.7]$
UC	0.8	0.8	0.7	0.7	0.7	0.7	0.8	0.7	0.7	0.8	0.9	1.0	1.1	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied)

Bin 10: 1/3 Spectra Sound Power in $\mathbf{d B}(A)$

Bin 10: 1/3 Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.9	67.5	69.9	73.6	77.4	83.9	87.2	85.9	89.2	92.1	89.3	91.8	91.3	91.0
U_{C}	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.8	0.7	0.7	0.8	0.7	0.8	0.8
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	91.2	93.7	94.0	93.6	93.0	92.5	91.2	94.4	90.5	84.5	79.7	72.9	64.4	[55.7]
U_{C}	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.9	0.9	1.1	1.6

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

Bin 10.5: 1/3 Spectra Sound Power in dB(A)

Bin 10.5: 1/3 Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.7	67.3	69.6	73.5	77.0	83.6	85.6	84.4	89.0	90.8	88.8	91.1	90.6	90.4
U_{C}	0.9	0.9	1.0	0.9	0.9	0.9	1.0	1.0	0.8	0.7	0.8	0.8	0.8	0.8
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	90.6	93.2	93.7	93.3	93.0	92.3	91.2	93.9	89.6	84.2	79.4	72.6	64.2	[55.7]
U_{C}	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	0.9	1.1	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

NOISE

Bin 11: 1/3 Spectra Sound Power in dB(A)

Third Octave Frequency [Hz]

Bin 11: 1/3 Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.4	68.3	69.3	73.2	76.7	82.7	85.5	85.0	87.8	91.0	88.7	90.4	90.1	89.7
U_{C}	0.9	0.9	0.9	0.9	0.9	0.8	1.0	0.8	0.7	0.7	0.8	0.8	0.8	0.8
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	90.1	93.0	93.6	93.6	93.4	92.9	91.3	94.1	89.7	84.1	79.2	72.3	64.1	[55.9]
U_{C}	0.7	0.7	0.7	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.9	0.9	1.0	1.6

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

NOISE

Bin 11.5: 1/3 Spectra Sound Power in dB(A)

Bin 11.5: 1/3 Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.8	69.9	69.9	73.7	77.3	82.0	86.8	84.8	87.4	91.0	88.5	90.4	89.9	89.7
U_{C}	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0	0.8	0.8	0.9	0.9	0.9	0.9
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	90.3	93.2	93.9	94.0	94.0	93.6	91.6	94.1	90.2	84.3	79.3	72.4	64.1	[55.7]
U_{C}	0.8	0.8	0.7	0.7	0.7	0.7	0.8	0.7	0.8	0.8	1.0	1.0	1.2	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

NOISE

Bin 12: 1/3 Spectra Sound Power in $\mathbf{d B}(A)$

Third Octave Frequency [Hz]

Bin 12: 1/3 Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.9	70.1	70.0	73.8	77.2	82.1	86.9	82.9	87.3	90.9	88.5	90.0	89.5	89.2
U_{C}	1.0	0.9	0.9	1.0	0.9	0.9	1.0	1.7	0.8	0.7	0.8	0.8	0.9	0.9
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	89.6	92.6	93.5	93.6	93.9	93.4	91.5	93.3	89.3	84.1	78.8	72.1	64.0	[56.2]
U_{C}	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	0.9	1.1	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

NOISE

Bin 12.5: 1/3 Spectra Sound Power in dB(A)

Third Octave Frequency [Hz]

Bin 12.5: 1/3 Spectra Sound Power in $\mathrm{dB}(\mathrm{A})$														
Frequency[Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Laeq	60.7	70.7	69.8	73.8	77.2	81.8	87.7	83.0	86.8	91.0	88.6	90.1	89.3	88.9
U_{C}	1.0	0.9	1.0	1.0	1.0	0.9	0.9	1.5	0.8	0.7	0.8	0.8	0.9	0.9
Frequency[Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Laeq	89.1	92.4	93.4	93.7	94.2	93.7	91.8	92.9	89.2	84.4	78.8	72.1	63.9	[55.7]
U_{C}	0.9	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	1.0	1.2	1.7

[] Total Noise less than 3 dB greater than background (3 dB correction applied).

NOISE

APPENDIX D: TONALITY ASSESSMENT

(Sn
NOISE

Windlectric Inc.
Page 46 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

BIN 7.5: Tonal components determined								
	Frequency	delta f	Lpn,avg,j,k	$\mathrm{L}_{\mathrm{pt}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pn}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\mathrm{aj}, \mathrm{j}, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dLti,1,7.5:	62.5	1.56	21.5	35.8	37.7	-2.0	-2.0	0.1
dL ${ }_{\text {t1, 2,7,5: }}$	57.8	1.56	21.6	34.4	37.9	-3.5	-2.0	-1.5
dL ${ }_{\text {ti, }, 7,7,5}$	57.8	1.56	21.9	36.2	38.2	-1.9	-2.0	0.1
	65.6	1.56	23.7	33.7	39.9	-6.2	-2.0	-4.2
dL ${ }_{\text {t1, } 6,7.5 \text { : }}$	67.2	1.56	23.9	33.0	40.2	-7.2	-2.0	-5.1
	65.6	1.56	22.6	35.3	38.8	-3.5	-2.0	-1.5
dL ${ }_{\text {ti, }, 7,7,5}$	67.2	1.56	22.5	32.7	38.7	-6.0	-2.0	-4.0
dLti,9,7.5:	64.1	1.56	22.7	35.0	39.0	-3.9	-2.0	-1.9
dLti,10,7.5:	67.2	1.56	24.7	31.2	40.9	-9.8	-2.0	-7.8
dL ${ }_{\text {ti,11,7.5: }}$	57.8	1.56	24.4	31.0	40.6	-9.6	-2.0	-7.6
dL ${ }_{\text {t1,13,7.5: }}$	64.1	1.56	24.3	34.1	40.5	-6.4	-2.0	-4.4
$\mathrm{dL}_{\mathrm{t} 1,14,7,5}$:	64.1	1.56	22.1	34.1	38.3	-4.2	-2.0	-2.2
dLti,15,7.5:	67.2	1.56	23.2	35.2	39.4	-4.2	-2.0	-2.2
dLti,16,7.5:	67.2	1.56	22.2	34.9	38.5	-3.6	-2.0	-1.6
$\mathrm{dL}_{\mathrm{t} 1,17,7,5}$:	68.8	1.56	23.1	35.5	39.3	-3.8	-2.0	-1.8
dLti,18,7.5:	67.2	1.56	23.1	35.1	39.3	-4.2	-2.0	-2.2
dL ${ }_{\text {t1,20,7.5: }}$	64.1	1.56	24.8	33.2	41.1	-7.9	-2.0	-5.9
dLti,21,7.5:	67.2	1.56	23.0	35.2	39.2	-4.0	-2.0	-2.0
dLti,22,7.5:	64.1	1.56	24.2	33.7	40.4	-6.7	-2.0	-4.7
dL ${ }_{\text {t1,26,7.5: }}$	65.6	1.56	22.6	37.2	38.8	-1.6	-2.0	0.4
dLti,27,7.5:	64.1	1.56	22.5	35.0	38.7	-3.8	-2.0	-1.8
dL ${ }_{\text {t1,28,7.5: }}$	64.1	1.56	21.2	35.3	37.5	-2.2	-2.0	-0.2
dL ${ }_{\text {t1,29,7.5: }}$	64.1	1.56	21.4	36.2	37.6	-1.4	-2.0	0.6
dL ${ }_{\text {t1, 30,7.5: }}$	62.5	1.56	22.0	35.6	38.2	-2.6	-2.0	-0.6
dLti,31,7.5:	64.1	1.56	20.7	33.6	36.9	-3.3	-2.0	-1.3
dLti,32,7.5:	67.2	1.56	23.3	34.9	39.5	-4.6	-2.0	-2.6
dL ${ }_{\text {t1,33,7.5: }}$	64.1	1.56	23.2	33.9	39.4	-5.5	-2.0	-3.5
dL ${ }_{\text {t1,34,7,5: }}$	68.8	1.56	22.7	34.9	38.9	-4.0	-2.0	-2.0
dL ${ }_{\text {t1,35,7.5: }}$	67.2	1.56	23.9	32.5	40.1	-7.6	-2.0	-5.6
dLti,36,7.5:	65.6	1.56	23.9	30.5	40.2	-9.7	-2.0	-7.7
dLti,37,7.5:	64.1	1.56	24.7	32.8	40.9	-8.0	-2.0	-6.0
dL ${ }_{\text {t1,40,7.5: }}$	67.2	1.56	23.5	34.4	39.8	-5.4	-2.0	-3.4
dLti,41,7.5:	65.6	1.56	23.1	33.2	39.4	-6.2	-2.0	-4.2
dL ${ }_{\text {t1,42,7.5: }}$	65.6	1.56	22.8	32.4	39.0	-6.6	-2.0	-4.6
dL ${ }_{\text {t1,43,7.5: }}$	68.8	1.56	23.2	30.9	39.4	-8.6	-2.0	-6.6
$\mathrm{dL}_{\mathrm{t} 1,44,7,5}$	64.1	1.56	23.1	34.1	39.3	-5.3	-2.0	-3.3
$\mathrm{dL}_{\mathrm{t} 1,45,7,5}$:	64.1	1.56	23.2	32.3	39.4	-7.2	-2.0	-5.2
dLti,47,7.5:	65.6	1.56	25.0	31.1	41.2	-10.1	-2.0	-8.1
dL ${ }_{\text {t } 2,23,7.5}$:	100.0	1.56	27.3	40.1	43.6	-3.4	-2.0	-1.4
dL ${ }_{\text {t } 2,24,7,5:}$	89.1	1.56	26.8	40.6	43.1	-2.5	-2.0	-0.5
dL ${ }_{\text {t2,25,7.5: }}$	84.4	1.56	24.9	36.6	41.2	-4.6	-2.0	-2.6
dLix,5,7.5:	134.4	1.56	28.0	34.3	44.3	-10.0	-2.0	-8.0
dLL ${ }_{\text {I3,8,7.5: }}$	134.4	1.56	25.8	32.9	42.1	-9.2	-2.0	-7.2
dL ${ }_{\text {i3,10,7.5: }}$	134.4	1.56	27.7	36.3	44.0	-7.7	-2.0	-5.7
$\mathrm{dL}_{\text {t3,11,7.5: }}$	132.8	1.56	27.0	34.6	43.3	-8.7	-2.0	-6.7
dL ${ }_{\text {t3,15,7.5: }}$	134.4	1.56	26.5	35.1	42.8	-7.7	-2.0	-5.7
$\mathrm{dL}_{\text {t3,16,7.5: }}$	134.4	1.56	26.0	35.3	42.3	-7.0	-2.0	-5.0
dLis,21,7.5:	134.4	1.56	26.5	33.1	42.8	-9.7	-2.0	-7.7
dL $\mathrm{L}_{\text {t3,28,7.5: }}$	129.7	1.56	25.3	31.5	41.6	-10.1	-2.0	-8.1
dL ${ }_{\text {t } 3,29,7.5:}$	129.7	1.56	25.2	34.0	41.5	-7.5	-2.0	-5.5
dL ${ }_{\text {t3,32,7.5: }}$	134.4	1.56	26.6	34.5	42.9	-8.4	-2.0	-6.4

Windlectric Inc.
Page 47 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

dL ${ }_{\text {t3,40,7.5: }}$	134.4	1.56	27.1	35.1	43.4	-8.3	-2.0	-6.3
dL ${ }_{\text {t } 3,41,7.5}$	132.8	1.56	26.8	33.7	43.1	-9.4	-2.0	-7.4
$\mathrm{dL}_{\mathrm{t} 4,36,7.5}$:	175.0	1.56	27.4	33.5	43.7	-10.2	-2.0	-8.2
dLt5,37,7.5:	232.8	1.56	26.6	33.9	43.0	-9.1	-2.1	-7.0
dL ${ }_{\text {t5,39,7.5: }}$	232.8	1.56	26.5	32.6	43.0	-10.3	-2.1	-8.2
dL ${ }_{\text {t5,40,7.5: }}$	232.8	1.56	27.1	33.7	43.5	-9.9	-2.1	-7.8
dL ${ }_{\text {t5,41,7.5: }}$	232.8	1.56	26.8	34.4	43.2	-8.9	-2.1	-6.8
dL ${ }_{\text {t5,44,7,5: }}$	232.8	1.56	26.7	33.0	43.2	-10.2	-2.1	-8.1
dL ${ }_{\text {t5,48,7.5: }}$	232.8	1.56	27.8	35.3	44.2	-8.9	-2.1	-6.8
dL $\mathrm{d}_{\text {6,46,7.5: }}$	325.0	1.56	26.6	33.5	43.1	-9.6	-2.1	-7.5
dL ${ }_{\text {t7,15,7.5: }}$	7503.6	1.56	-15.4	-9.1	13.5	-22.6	-4.9	-17.7
dL ${ }_{\text {t7,43, }, 5.5}$	7652.0	1.56	-16.1	-7.0	12.9	-19.9	-5.0	-14.9
dL ${ }_{\text {t7,45,7,5: }}$	7506.7	1.56	-16.4	-10.2	12.5	-22.6	-4.9	-17.7

BIN 7.5: Tonal components determined - Compact

Spectrum	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn,j, } \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$
\#\#	[Hz]	[dB]										
1	62.5	-2.0	---	---	---	---	---	---	---	---	---	---
2	57.8	-3.5	---	---	---	---	---	---	---	---	---	---
3	57.8	-1.9	---	---	---	---	---	---	---	---	---	---
4	65.6	-6.2	---	---	---	---	---	---	---	---	---	---
5	---	---	---	---	134.4	-10.0	---	---	---	---	---	---
6	67.2	-7.2	---	---	---	---	---	---	---	---	---	---
7	65.6	-3.5	---	---	---	---	---	---	---	---	---	---
8	67.2	-6.0	---	---	134.4	-9.2	---	---	---	---	---	---
9	64.1	-3.9	---	---	---	---	---	---	---	---	---	---
10	67.2	-9.8	---	---	134.4	-7.7	---	---	---	---	---	---
11	57.8	-9.6	---	---	132.8	-8.7	---	---	---	---	---	---
12	---	---	---	---	---	---	---	---	---	---	---	---
13	64.1	-6.4	---	---	---	---	---	---	---	---	---	---
14	64.1	-4.2	---	---	---	---	---	---	---	---	---	---
15	67.2	-4.2	---	---	134.4	-7.7	---	---	---	---	---	---
16	67.2	-3.6	---	---	134.4	-7.0	---	---	---	---	---	---
17	68.8	-3.8	---	---	---	---	---	---	---	---	---	---
18	67.2	-4.2	---	---	---	---	---	---	---	---	---	---
19	---	---	---	---	---	---	---	---	---	---	---	---
20	64.1	-7.9	---	---	---	---	---	---	---	---	---	---
21	67.2	-4.0	---	---	134.4	-9.7	---	---	---	---	---	---
22	64.1	-6.7	---	---	---	---	---	---	---	---	---	---
23	---	---	100.0	-3.4	---	---	---	---	---	---	---	---
24	---	---	89.1	-2.5	---	---	---	---	---	---	---	---
25	---	---	84.4	-4.6	---	---	---	---	---	---	---	---
26	65.6	-1.6	---	---	---	---	---	---	---	---	---	---
27	64.1	-3.8	---	---	---	---	---	---	---	---	---	---
28	64.1	-2.2	---	---	129.7	-10.1	---	---	---	---	---	---
29	64.1	-1.4	---	---	129.7	-7.5	---	---	---	---	---	---
30	62.5	-2.6	---	---	---	---	---	---	---	---	---	---
31	64.1	-3.3	---	---	---	---	---	---	---	---	---	---
32	67.2	-4.6	---	---	134.4	-8.4	---	---	---	---	---	---
33	64.1	-5.5	---	---	---	---	---	---	---	---	---	---
34	68.8	-4.0	---	---	---	---	---	---	---	---	---	---
35	67.2	-7.6	---	---	---	---	---	---	---	---	---	---
36	65.6	-9.7	---	---	---	---	175.0	-10.2	---	---	---	---

37	64.1	-8.0	---	---	---	---	---	---	232.8	-9.1	---	---
38	---	---	---	---	---	---	---	---	---	---	---	---
39	---	---	---	---	---	---	---	---	232.8	-10.3	---	---
40	67.2	-5.4	---	---	134.4	-8.3	---	---	232.8	-9.9	---	---
41	65.6	-6.2	---	---	132.8	-9.4	---	---	232.8	-8.9	---	---
42	65.6	-6.6	---	---	---	---	---	---	---	---	---	---
43	68.8	-8.6	---	---	---	---	---	---	---	---	---	---
44	64.1	-5.3	---	---	---	---	---	---	232.8	-10.2	---	---
45	64.1	-7.2	---	---	---	---	---	---	---	---	---	---
46	---	---	---	---	---	---	---	---	---	---	325.0	-9.6
47	65.6	-10.1	---	---	---	---	---	---	---	---	---	---
48	---	---	---	---	---	---	---	---	232.8	-8.9	---	---
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL} \mathrm{L}_{\text {[}}[\mathrm{dB}]$	64.5	-5.6	99.5	-13.0	134.1	-12.8	175.0	-16.1	232.8	-14.7	325.0	-16.3
$\mathrm{L}_{\text {a }}$ [dB]		-2.0		-2.0		-2.0		-2.0		-2.1		-2.1
$\mathrm{dL}_{\mathrm{a}, \mathrm{k}}[\mathrm{dB}]$		-3.6		-11.0		-10.8		-14.1		-12.7		-14.1
$\mathrm{K}_{\text {TN }}[\mathrm{dB}$]		0		0		0		0		0		0

BIN 7.5: Narrowband spectrum

BIN 7.5: Narrowband spectrum

BIN 7.5: Narrowband spectrum

Windlectric Inc.
Page 50 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

BIN 8: Tonal components determined								
	Frequency	delta f	$\mathrm{L}_{\text {pn,avg, }, \mathrm{j} \text {, }}$	$\mathrm{L}_{\mathrm{pt}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pn}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\mathrm{aj}, \mathrm{j}, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dL $\mathrm{Lt}_{1,1,8}$	135.9	1.56	26.8	35.6	43.1	-7.5	-2.0	-5.5
$\mathrm{dL}_{\text {t1, } 3,8}$	140.6	1.56	28.1	42.1	44.4	-2.3	-2.0	-0.3
$\mathrm{dL}_{\text {t1, } 4,8}$:	139.1	1.56	27.6	38.2	43.9	-5.7	-2.0	-3.7
dL $\mathrm{Lt}_{1,5,8}$	139.1	1.56	27.3	40.6	43.6	-3.0	-2.0	-0.9
$\mathrm{dL}_{\text {t1, } 6,8}$:	140.6	1.56	27.4	36.9	43.7	-6.7	-2.0	-4.7
dL $\mathrm{Lt}_{1,7,8}$	140.6	1.56	27.0	39.7	43.3	-3.6	-2.0	-1.5
$\mathrm{dL}_{\text {t1,9,8: }}$	140.6	1.56	26.0	39.5	42.3	-2.8	-2.0	-0.7
d $L_{\text {ti, 10, }}$:	142.2	1.56	27.9	34.6	44.2	-9.7	-2.0	-7.6
dLti,11,8:	140.6	1.56	26.7	44.2	43.0	1.1	-2.0	3.1
dL ${ }_{\text {ti, 12, }}$:	140.6	1.56	26.5	43.9	42.8	1.1	-2.0	3.1
$\mathrm{dL}_{\mathrm{t} 1,13,8}$:	140.6	1.56	26.6	40.1	42.9	-2.9	-2.0	-0.8
$\mathrm{dL}_{\text {t1,14,8: }}$	139.1	1.56	27.0	33.7	43.3	-9.6	-2.0	-7.6
dLti,15,8:	140.6	1.56	27.0	41.3	43.3	-2.1	-2.0	-0.1
dLtilis,8:	142.2	1.56	27.3	37.4	43.6	-6.2	-2.0	-4.2
dL ${ }_{\text {t1,19,8: }}$	139.1	1.56	26.7	38.4	43.0	-4.5	-2.0	-2.5
dLti,20,8:	135.9	1.56	27.2	39.3	43.5	-4.2	-2.0	-2.2
$\mathrm{dL}_{\text {t1, 21, }}$:	139.1	1.56	26.2	43.8	42.5	1.3	-2.0	3.3
dLtil2, ${ }^{\text {d }}$:	140.6	1.56	27.7	42.7	44.0	-1.3	-2.0	0.7
dLti,23,8:	140.6	1.56	26.7	43.0	43.0	0.0	-2.0	2.0
dL ${ }_{\text {ti } 24,8:}$	139.1	1.56	26.9	41.4	43.2	-1.8	-2.0	0.2
dLtil,2,8:	140.6	1.56	28.1	40.2	44.4	-4.3	-2.0	-2.3
dLti,27,8:	140.6	1.56	27.5	42.3	43.8	-1.5	-2.0	0.5
dL ${ }_{\text {ti, } 29,8}$:	140.6	1.56	29.2	36.0	45.5	-9.5	-2.0	-7.4
	142.2	1.56	29.4	37.5	45.7	-8.2	-2.0	-6.2
dLtil,31,8:	142.2	1.56	28.5	36.2	44.8	-8.5	-2.0	-6.5
dLtil,3,8:	140.6	1.56	29.0	35.2	45.3	-10.1	-2.0	-8.1
dL ${ }_{\text {t1, } 3,8,8}$	140.6	1.56	28.3	43.1	44.6	-1.5	-2.0	0.6
$\mathrm{dL}_{\text {t1,34,8: }}$	140.6	1.56	30.4	41.4	46.7	-5.3	-2.0	-3.3
dL ${ }_{\text {t1, } 3,8,8}$	140.6	1.56	30.4	39.2	46.7	-7.5	-2.0	-5.5
dLtil,36,8:	139.1	1.56	30.0	44.6	46.3	-1.7	-2.0	0.3
dLti,37,8:	139.1	1.56	27.7	41.3	44.0	-2.7	-2.0	-0.7
dL ${ }_{\text {t1, } 3,8,8}$	139.1	1.56	27.8	41.8	44.1	-2.3	-2.0	-0.3
dLtil,39,8:	139.1	1.56	27.8	39.8	44.1	-4.3	-2.0	-2.3
dL ${ }_{\text {LT,40,8: }}$	142.2	1.56	27.5	39.3	43.8	-4.5	-2.0	-2.5
$\mathrm{dL}_{\mathrm{t} 1,41,8}$	140.6	1.56	27.8	40.6	44.1	-3.4	-2.0	-1.4
dL ${ }_{\text {ti, 42, }}$:	142.2	1.56	27.7	38.6	44.0	-5.4	-2.0	-3.4
dL ${ }_{\text {L1,44,8: }}$	140.6	1.56	28.0	36.7	44.3	-7.7	-2.0	-5.6
dLti,45,8:	142.2	1.56	29.6	37.6	45.9	-8.3	-2.0	-6.3
$\mathrm{dL}_{\mathrm{t} 1,46,8}$	139.1	1.56	28.4	40.0	44.7	-4.7	-2.0	-2.7
$\mathrm{dL}_{\mathrm{t}_{11,47,8}}$	140.6	1.56	28.1	42.4	44.4	-2.1	-2.0	0.0
dL ${ }_{\text {t1,49,8: }}$	139.1	1.56	29.3	39.5	45.6	-6.1	-2.0	-4.0
dL ${ }_{\text {t2, 16, }}$:	96.9	1.56	28.1	44.8	44.4	0.5	-2.0	2.5
dL ${ }_{\text {L2,17, }}$:	92.2	1.56	27.4	43.6	43.7	-0.1	-2.0	1.9
$\mathrm{dL}_{\mathrm{L}_{2}, 22,8}$:	85.9	1.56	25.9	40.1	42.2	-2.2	-2.0	-0.1
dL ${ }_{\text {L } 2,34,8:}$	89.1	1.56	29.1	43.8	45.4	-1.6	-2.0	0.4
$\mathrm{dL}_{\text {t3, } 1,8}$:	135.9	1.56	26.8	35.6	43.1	-7.5	-2.0	-5.5
$\mathrm{dL}_{\text {t3, } 3,8}$:	140.6	1.56	28.1	42.1	44.4	-2.3	-2.0	-0.3
dL ${ }_{\text {ti, } 4,8}$	139.1	1.56	27.6	38.2	43.9	-5.7	-2.0	-3.7
$\mathrm{dL}_{\text {t3,5,8: }}$	139.1	1.56	27.3	40.6	43.6	-3.0	-2.0	-0.9
dL $\mathrm{L}_{3,6,8}$:	140.6	1.56	27.4	36.9	43.7	-6.7	-2.0	-4.7
$\mathrm{dL}_{\text {ti, } 7,8}$:	140.6	1.56	27.0	39.7	43.3	-3.6	-2.0	-1.5

ACOUSTICS
NOISE

Windlectric Inc.
Page 51 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 3,9,8}$:	140.6	1.56	26.0	39.5	42.3	-2.8	-2.0	-0.7
dLis,10,8:	142.2	1.56	27.9	34.6	44.2	-9.7	-2.0	-7.6
$\mathrm{dL}_{\mathrm{t}, 11,8}$:	140.6	1.56	26.7	44.2	43.0	1.1	-2.0	3.1
$\mathrm{dL}_{\mathrm{t} 3,12,8}$	140.6	1.56	26.5	43.9	42.8	1.1	-2.0	3.1
dL ${ }_{\text {L } 3,13,8}$	140.6	1.56	26.6	40.1	42.9	-2.9	-2.0	-0.8
$\mathrm{dL}_{\mathrm{t}_{3,14,8} \text { : }}$	139.1	1.56	27.0	33.7	43.3	-9.6	-2.0	-7.6
dL ${ }_{\text {L } 3,15,8}$	140.6	1.56	27.0	41.3	43.3	-2.1	-2.0	-0.1
$\mathrm{dL}_{\mathrm{L}, 18,8}$	142.2	1.56	27.3	37.4	43.6	-6.2	-2.0	-4.2
dLti3,19,8:	139.1	1.56	26.7	38.4	43.0	-4.5	-2.0	-2.5
dL ${ }_{\text {L } 3,20,8:}$	135.9	1.56	27.2	39.3	43.5	-4.2	-2.0	-2.2
dL ${ }_{\text {L } 3,21,8}$	139.1	1.56	26.2	43.8	42.5	1.3	-2.0	3.3
$\mathrm{dL}_{\mathrm{L}, 22,8}$	140.6	1.56	27.7	42.7	44.0	-1.3	-2.0	0.7
$\mathrm{dL}_{\mathrm{t} 3,23,8}$	140.6	1.56	26.7	43.0	43.0	0.0	-2.0	2.0
dLis,24,8:	139.1	1.56	26.9	41.4	43.2	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t}, 25,8}$:	140.6	1.56	28.1	40.2	44.4	-4.3	-2.0	-2.3
$\mathrm{dL}_{\mathrm{L}, 27,8}$	140.6	1.56	27.5	42.3	43.8	-1.5	-2.0	0.5
$\mathrm{dL}_{\mathrm{t}, 29,8}$	140.6	1.56	29.2	36.0	45.5	-9.5	-2.0	-7.4
dL ${ }_{\text {L } 3,30,8:}$	142.2	1.56	29.4	37.5	45.7	-8.2	-2.0	-6.2
dL ${ }_{\text {t } 3,31,8}$:	142.2	1.56	28.5	36.2	44.8	-8.5	-2.0	-6.5
dL ${ }_{\text {L } 3,32,8:}$	140.6	1.56	29.0	35.2	45.3	-10.1	-2.0	-8.1
dLti3,33,8:	140.6	1.56	28.3	43.1	44.6	-1.5	-2.0	0.6
$\mathrm{dL}_{\mathrm{t} 3,34,8}$	140.6	1.56	30.4	41.4	46.7	-5.3	-2.0	-3.3
$\mathrm{dL}_{\mathrm{L} 3,35,8}$:	140.6	1.56	30.4	39.2	46.7	-7.5	-2.0	-5.5
$\mathrm{dL}_{\mathrm{L}, 36,8}$	139.1	1.56	30.0	44.6	46.3	-1.7	-2.0	0.3
dL ${ }_{\text {t } 3,37,8}$	139.1	1.56	27.7	41.3	44.0	-2.7	-2.0	-0.7
dL ${ }_{\text {L }}^{3,38,8}$:	139.1	1.56	27.8	41.8	44.1	-2.3	-2.0	-0.3
dL ${ }_{\text {t } 3,39,8:}$	139.1	1.56	27.8	39.8	44.1	-4.3	-2.0	-2.3
$\mathrm{dL}_{\mathrm{L}, 40,8}$:	142.2	1.56	27.5	39.3	43.8	-4.5	-2.0	-2.5
$\mathrm{dL}_{\mathrm{L}, 41,8}$	140.6	1.56	27.8	40.6	44.1	-3.4	-2.0	-1.4
$\mathrm{dL}_{\mathrm{t} 3,42,8}$	142.2	1.56	27.7	38.6	44.0	-5.4	-2.0	-3.4
dL ${ }_{\text {L } 3,44,8:}$	140.6	1.56	28.0	36.7	44.3	-7.7	-2.0	-5.6
dLti3,45,8:	142.2	1.56	29.6	37.6	45.9	-8.3	-2.0	-6.3
$\mathrm{dL}_{\mathrm{L}_{3,46,8}}$	139.1	1.56	28.4	40.0	44.7	-4.7	-2.0	-2.7
dL ${ }_{\text {L } 3,47,8:}$	140.6	1.56	28.1	42.4	44.4	-2.1	-2.0	0.0
$\mathrm{dL}_{\mathrm{L} 3,49,8}$	139.1	1.56	29.3	39.5	45.6	-6.1	-2.0	-4.0
dLti4,1,8:	135.9	1.56	26.8	35.6	43.1	-7.5	-2.0	-5.5
$\mathrm{dL}_{44,3,8}$	140.6	1.56	28.1	42.1	44.4	-2.3	-2.0	-0.3
dLti4, ${ }_{\text {a }}$:	139.1	1.56	27.6	38.2	43.9	-5.7	-2.0	-3.7
dLti4,5,8:	139.1	1.56	27.3	40.6	43.6	-3.0	-2.0	-0.9
$\mathrm{dL}_{\mathrm{t}_{4,6,8} \text { : }}$	140.6	1.56	27.4	36.9	43.7	-6.7	-2.0	-4.7
$\mathrm{dL}_{44,7,8}$	140.6	1.56	27.0	39.7	43.3	-3.6	-2.0	-1.5
$\mathrm{dL}_{\text {t4,9,8: }}$	140.6	1.56	26.0	39.5	42.3	-2.8	-2.0	-0.7
dLti4,10,8:	142.2	1.56	27.9	34.6	44.2	-9.7	-2.0	-7.6
dLti4,11,8:	140.6	1.56	26.7	44.2	43.0	1.1	-2.0	3.1
$\mathrm{dL}_{\mathrm{t}, 12,8}$:	140.6	1.56	26.5	43.9	42.8	1.1	-2.0	3.1
$\mathrm{dL}_{\mathrm{t}, 13,8}$:	140.6	1.56	26.6	40.1	42.9	-2.9	-2.0	-0.8
$\mathrm{dL}_{\text {ti, 14, }}$:	139.1	1.56	27.0	33.7	43.3	-9.6	-2.0	-7.6
dLti4,15,8:	140.6	1.56	27.0	41.3	43.3	-2.1	-2.0	-0.1
$\mathrm{dL}_{\text {t4,18,8: }}$	142.2	1.56	27.3	37.4	43.6	-6.2	-2.0	-4.2
$\mathrm{dL}_{\text {ti, } 19,8:}$	139.1	1.56	26.7	38.4	43.0	-4.5	-2.0	-2.5
dLti4, 20,8 :	135.9	1.56	27.2	39.3	43.5	-4.2	-2.0	-2.2
$\mathrm{dL}_{44,21,8}$	139.1	1.56	26.2	43.8	42.5	1.3	-2.0	3.3
dL ${ }_{\text {t } 4,22,8:}$	140.6	1.56	27.7	42.7	44.0	-1.3	-2.0	0.7
$\mathrm{dL}_{\text {t4, 23,8: }}$	140.6	1.56	26.7	43.0	43.0	0.0	-2.0	2.0

ACOUSTICS
NOISE

Windlectric Inc.
Page 52 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

dL ${ }_{\text {t4, } 24,8 \text { : }}$	139.1	1.56	26.9	41.4	43.2	-1.8	-2.0	0.2
dLti4,25,8:	140.6	1.56	28.1	40.2	44.4	-4.3	-2.0	-2.3
dL ${ }_{\text {t4, } 27,8}$:	140.6	1.56	27.5	42.3	43.8	-1.5	-2.0	0.5
dLt4,29,8:	140.6	1.56	29.2	36.0	45.5	-9.5	-2.0	-7.4
dL ${ }_{\text {t4, } 3,8}$:	142.2	1.56	29.4	37.5	45.7	-8.2	-2.0	-6.2
dL ${ }_{\text {t4,31,8: }}$	142.2	1.56	28.5	36.2	44.8	-8.5	-2.0	-6.5
dL ti, $32,8^{\text {: }}$	140.6	1.56	29.0	35.2	45.3	-10.1	-2.0	-8.1
dL ${ }_{\text {t4, 3, }}$:	140.6	1.56	28.3	43.1	44.6	-1.5	-2.0	0.6
dLt+4,34,8:	140.6	1.56	30.4	41.4	46.7	-5.3	-2.0	-3.3
dL ${ }_{\text {t4, } 3,8}$:	140.6	1.56	30.4	39.2	46.7	-7.5	-2.0	-5.5
dL ${ }_{\text {t4, } 3,8,8}$	139.1	1.56	30.0	44.6	46.3	-1.7	-2.0	0.3
dL t4, 37,8 : $^{\text {a }}$	139.1	1.56	27.7	41.3	44.0	-2.7	-2.0	-0.7
dL ${ }_{\text {t4, } 3,8,8}$	139.1	1.56	27.8	41.8	44.1	-2.3	-2.0	-0.3
dLti4,39,8:	139.1	1.56	27.8	39.8	44.1	-4.3	-2.0	-2.3
dL ${ }_{\text {t4,40, }}$:	142.2	1.56	27.5	39.3	43.8	-4.5	-2.0	-2.5
$\mathrm{dL}_{\text {t4,41, }}$:	140.6	1.56	27.8	40.6	44.1	-3.4	-2.0	-1.4
dL ${ }_{\text {t4,42,8: }}$	142.2	1.56	27.7	38.6	44.0	-5.4	-2.0	-3.4
dL ${ }_{\text {t4,44, }}$:	140.6	1.56	28.0	36.7	44.3	-7.7	-2.0	-5.6
dLt ${ }_{\text {t } 4,4,8 \text { : }}$	142.2	1.56	29.6	37.6	45.9	-8.3	-2.0	-6.3
dL ${ }_{\text {t4,46, }}$:	139.1	1.56	28.4	40.0	44.7	-4.7	-2.0	-2.7
dL $\mathrm{t}_{4,47,8}$	140.6	1.56	28.1	42.4	44.4	-2.1	-2.0	0.0
dL ${ }_{\text {t4,4, }}$:	139.1	1.56	29.3	39.5	45.6	-6.1	-2.0	-4.0
$\mathrm{dL}_{\text {t5,28,8: }}$	175.0	1.56	27.6	37.6	43.9	-6.4	-2.0	-4.3
dL ${ }_{\text {t6,2,8, }}$:	232.8	1.56	27.2	33.2	43.6	-10.4	-2.1	-8.3
dL ${ }_{\text {t } 6,30,8}$:	232.8	1.56	28.5	35.3	44.9	-9.6	-2.1	-7.6
dL ${ }_{\text {t } 6,31,8}$:	232.8	1.56	28.0	34.8	44.4	-9.6	-2.1	-7.6
dL $\mathrm{t}_{6,34,8}$	232.8	1.56	28.8	35.3	45.3	-10.0	-2.1	-7.9
dL ${ }_{\text {t6,41, }}$:	232.8	1.56	27.5	33.8	43.9	-10.1	-2.1	-8.1
dL $\mathrm{L}_{\mathrm{t}, 44,8}$:	232.8	1.56	28.3	34.4	44.8	-10.3	-2.1	-8.3
dL ${ }_{\text {t6,46, }}$:	232.8	1.56	27.5	35.2	43.9	-8.7	-2.1	-6.6
dL ${ }_{\text {t } 6,47,8}$	232.8	1.56	27.8	35.2	44.2	-9.0	-2.1	-7.0
dL ${ }_{\text {t7, } 3,8,8}$	309.4	1.56	27.6	33.7	44.2	-10.5	-2.1	-8.4
dL ${ }_{\text {t7, } 2,8,8}$	309.4	1.56	27.8	35.5	44.4	-8.8	-2.1	-6.7
dL ${ }_{\text {t7, }} \mathrm{L}_{7,8,8}$	309.4	1.56	28.5	35.2	45.1	-9.9	-2.1	-7.8
dL ${ }_{\text {t7,46,8: }}$	325.0	1.56	26.8	34.3	43.4	-9.1	-2.1	-7.0
dLt7,4,8:	325.0	1.56	26.7	36.7	43.3	-6.6	-2.1	-4.5
dL ${ }_{\text {t7,4, }}$:	325.0	1.56	27.3	34.3	43.9	-9.6	-2.1	-7.4
dL ${ }_{\text {L } 8,28,8:}$	7639.5	1.56	-16.2	-9.9	12.8	-22.7	-5.0	-17.7
dLt9,28,8:	7639.5	1.56	-16.2	-9.9	12.8	-22.7	-5.0	-17.7

BIN 8: Tonal components determined - Compact

Spectrum	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}} \mathrm{k}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$
\#\#	[Hz]	[dB]										
1	68.8	-5.2	---	---	135.9	-7.5	135.9	-7.5	---	---	---	---
2	70.3	-3.5	---	---	---	---	---	---	---	---	---	---
3	70.3	-3.7	---	---	140.6	-2.3	140.6	-2.3	---	---	---	---
4	---	--	--	---	139.1	-5.7	139.1	-5.7	---	---	---	---
5	68.8	-4.3	---	---	139.1	-3.0	139.1	-3.0	---	---	---	---
6	70.3	-3.0	---	---	140.6	-6.7	140.6	-6.7	---	---	---	---
7	68.8	-1.6	---	---	140.6	-3.6	140.6	-3.6	---	---	---	---
8	68.8	-5.7	---	---	---	---	---	---	---	---	---	---
9	70.3	0.4	---	---	140.6	-2.8	140.6	-2.8	---	---	---	---
10	70.3	-2.6	---	---	142.2	-9.7	142.2	-9.7	---	---	---	---
11	70.3	-3.1	---	---	140.6	1.1	140.6	1.1	---	---	---	---

NOISE

Windlectric Inc.

12	68.8	-1.7	---	---	140.6	1.1	140.6	1.1	---	---	---	---
13	68.8	-1.7	---	---	140.6	-2.9	140.6	-2.9	---	---	---	---
14	57.8	-6.4	---	---	139.1	-9.6	139.1	-9.6	---	---	---	---
15	70.3	-2.9	---	---	140.6	-2.1	140.6	-2.1	---	---	---	---
16	---	---	96.9	0.5	---	---	---	---	---	---	---	---
17	---	---	92.2	-0.1	---	---	---	---	---	---	---	---
18	71.9	-1.4	---	---	142.2	-6.2	142.2	-6.2	---	---	---	---
19	68.8	-3.4	---	---	139.1	-4.5	139.1	-4.5	---	---	---	---
20	67.2	-6.0	---	---	135.9	-4.2	135.9	-4.2	---	---	---	---
21	---	---	---	---	139.1	1.3	139.1	1.3	---	---	---	---
22	---	---	85.9	-2.2	140.6	-1.3	140.6	-1.3	---	---	---	--
23	70.3	-0.6	---	---	140.6	0.0	140.6	0.0	---	---	---	---
24	68.8	-4.2	---	---	139.1	-1.8	139.1	-1.8	---	---	---	---
25	68.8	-4.4	---	---	140.6	-4.3	140.6	-4.3	---	---	---	---
26	68.8	-4.1	---	---	---	---	---	---	---	---	---	---
27	70.3	-2.4	---	---	140.6	-1.5	140.6	-1.5	---	---	---	---
28	70.3	-4.1	---	---	---	---	---	---	175.0	-6.4	232.8	-10.4
29	70.3	-4.3	---	---	140.6	-9.5	140.6	-9.5	---	---	---	---
30	70.3	-3.4	---	---	142.2	-8.2	142.2	-8.2	---	---	232.8	-9.6
31	70.3	-0.6	---	---	142.2	-8.5	142.2	-8.5	---	---	232.8	-9.6
32	70.3	-7.6	---	---	140.6	-10.1	140.6	-10.1	---	---	---	---
33	68.8	-4.8	---	---	140.6	-1.5	140.6	-1.5	---	---	---	---
34	---	---	89.1	-1.6	140.6	-5.3	140.6	-5.3	---	---	232.8	-10.0
35	70.3	-4.9	---	---	140.6	-7.5	140.6	-7.5	---	---	---	---
36	---	---	---	---	139.1	-1.7	139.1	-1.7	---	---	---	---
37	68.8	-3.2	---	---	139.1	-2.7	139.1	-2.7	---	---	---	---
38	68.8	-5.6	---	---	139.1	-2.3	139.1	-2.3	---	---	---	---
39	68.8	-3.2	---	---	139.1	-4.3	139.1	-4.3	---	---	---	--
40	71.9	-0.3	---	---	142.2	-4.5	142.2	-4.5	---	---	---	---
41	70.3	-1.0	---	---	140.6	-3.4	140.6	-3.4	---	---	232.8	-10.1
42	70.3	-0.8	---	---	142.2	-5.4	142.2	-5.4	---	---	---	--
43	70.3	-3.6	---	---	---	---	---	---	---	---	---	---
44	70.3	-2.7	---	---	140.6	-7.7	140.6	-7.7	---	---	232.8	-10.3
45	70.3	-3.3	---	---	142.2	-8.3	142.2	-8.3	---	---	---	---
46	---	---	--	---	139.1	-4.7	139.1	-4.7	---	--	232.8	-8.7
47	68.8	-4.5	---	---	140.6	-2.1	140.6	-2.1	---	---	232.8	-9.0
48	70.3	-7.5	---	---	---	---	---	---	---	---	---	---
49	70.3	-9.8	---	---	139.1	-6.1	139.1	-6.1	---	---	---	---
$\mathrm{ft}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL}_{\mathrm{k}}[\mathrm{dB}]$	69.7	-3.7	96.4	-10.4	139.5	-4.1	139.5	-4.1	175.0	-15.7	232.8	-14.4
$\mathrm{L}_{\mathrm{a}}[\mathrm{dB}]$		-2.0		-2.0		-2.0		-2.0		-2.0		-2.1
dLa,k[dB]		-1.7		-8.4		-2.1		-2.1		-13.6		-12.3
$\mathrm{K}_{\text {тn }}$ [dB]		0		0		0		0		0		0

2

BIN 8: Narrowband spectrum

BIN 8: Narrowband spectrum

Windlectric Inc.

Windlectric Inc.
Page 56 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

BIN 8.5: Tonal components determined								
	Frequency	delta f	$\mathrm{L}_{\text {pr,avg, }, \mathrm{k}}$	$L_{\text {pt, }, \text {, }}$	Lpn,j,k	$\mathrm{dL}_{\text {tn, }, \mathrm{j} \text { k }}$	L_{a}	$\mathrm{dL}_{\mathrm{aj}, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dL ${ }_{\text {t1, 1, }, \text { 5 }}$:	73.4	1.56	24.0	38.9	40.3	-1.4	-2.0	0.6
$\mathrm{dL}_{\text {t1, 2, }, \text {. }}$:	73.4	1.56	23.7	38.5	40.0	-1.5	-2.0	0.5
$\mathrm{dL}_{\mathrm{t} 1,3,8,5}$:	73.4	1.56	24.0	40.0	40.3	-0.2	-2.0	1.8
$\mathrm{dL}_{\mathrm{t} 1,4,8.5}$:	70.3	1.56	23.0	38.4	39.3	-0.9	-2.0	1.1
$\mathrm{dL}_{\mathrm{t} 1,5,8,5}$:	70.3	1.56	23.6	39.0	39.9	-0.9	-2.0	1.1
dLti,6,8.5:	73.4	1.56	24.8	38.8	41.1	-2.4	-2.0	-0.4
$\mathrm{dL}_{\mathrm{t} 1,7,8,5}$	70.3	1.56	22.8	39.6	39.1	0.5	-2.0	2.5
$\mathrm{dL}_{\mathrm{t} 1,8,8,5}$	70.3	1.56	24.0	38.8	40.3	-1.5	-2.0	0.5
$\mathrm{dL}_{\mathrm{t} 1,9,8.5}$:	68.8	1.56	25.4	37.0	41.7	-4.7	-2.0	-2.7
dL $\mathrm{Lt}_{\text {ti,10,8.5 }}$:	70.3	1.56	24.6	38.3	40.9	-2.6	-2.0	-0.6
dL $\mathrm{Lt}_{1,11,8.5}$	70.3	1.56	23.3	38.0	39.6	-1.6	-2.0	0.4
dL $\mathrm{ta}, 12,8.5$	73.4	1.56	24.5	39.3	40.8	-1.5	-2.0	0.5
$\mathrm{dL}_{\text {ti, } 13,8.5}$:	70.3	1.56	24.2	38.1	40.5	-2.4	-2.0	-0.4
dL $\mathrm{Lt}_{\text {t1,14,8.5: }}$	70.3	1.56	25.6	36.4	41.9	-5.5	-2.0	-3.5
$\mathrm{dL}_{\text {t1, } 15,8.5}$:	70.3	1.56	25.7	37.0	42.0	-5.0	-2.0	-3.0
dLtit,16,8.5:	70.3	1.56	25.1	37.3	41.4	-4.1	-2.0	-2.1
$\mathrm{dL}_{\text {t1, 17,8.5: }}$	70.3	1.56	25.8	39.2	42.1	-3.0	-2.0	-1.0
dL $\mathrm{Lt}_{1,18,8.5} \mathrm{~L}^{\text {a }}$	73.4	1.56	23.5	39.9	39.8	0.1	-2.0	2.1
dL $\mathrm{Lt}_{11,19,8.5}$	73.4	1.56	24.8	38.6	41.1	-2.5	-2.0	-0.5
$\mathrm{dL}_{\text {ti, } 20,8.5}$:	73.4	1.56	25.5	39.3	41.8	-2.6	-2.0	-0.5
$\mathrm{dL}_{\text {t1, } 21,8.5}$:	70.3	1.56	25.8	37.5	42.1	-4.6	-2.0	-2.6
$\mathrm{dL}_{11,22,8.5}$	70.3	1.56	24.8	39.6	41.1	-1.6	-2.0	0.5
dLti,23,8.5:	71.9	1.56	24.5	39.9	40.8	-0.8	-2.0	1.2
dLtil,25,8.5:	73.4	1.56	24.4	39.4	40.7	-1.2	-2.0	0.8
dL $\mathrm{Lt}_{\text {t1, } 26,8.5}$:	73.4	1.56	24.6	39.2	41.0	-1.7	-2.0	0.3
dL $\mathrm{Lt}_{1,27,8.5}$	70.3	1.56	25.3	40.3	41.6	-1.3	-2.0	0.7
dL ${ }_{\text {t1, } 28,8.5}$:	67.2	1.56	24.8	33.1	41.1	-8.0	-2.0	-6.0
d $\mathrm{Lt}_{\text {t1, } 29,8.5}$:	67.2	1.56	25.6	32.6	41.8	-9.2	-2.0	-7.2
dL $\mathrm{Lt} 1,30,8.5$	70.3	1.56	26.6	39.2	42.9	-3.7	-2.0	-1.7
$\mathrm{dL}_{\text {t1, } 31,8.5}$:	70.3	1.56	24.2	36.7	40.5	-3.8	-2.0	-1.8
$\mathrm{dL}_{\text {t1, } 32,8.5}$:	70.3	1.56	23.8	37.0	40.1	-3.0	-2.0	-1.0
dL $\mathrm{Lt}_{1,33,8.5}$:	70.3	1.56	24.1	38.6	40.4	-1.8	-2.0	0.2
dLtil,34,8.5:	70.3	1.56	24.6	38.8	40.9	-2.0	-2.0	0.0
$\mathrm{dL}_{11,35,8.5}$	70.3	1.56	25.3	39.0	41.6	-2.5	-2.0	-0.5
	70.3	1.56	25.1	39.6	41.4	-1.8	-2.0	0.2
dLtil,37,8.5:	70.3	1.56	26.3	39.6	42.6	-3.0	-2.0	-1.0
$\mathrm{dL}_{\text {t1, } 38,8.5}$:	70.3	1.56	25.4	37.8	41.7	-3.9	-2.0	-1.9
$\mathrm{dL}_{11,40,8.5}$	70.3	1.56	26.4	36.6	42.7	-6.1	-2.0	-4.1
$\mathrm{dL}_{\text {t1, 41,8.5: }}$	73.4	1.56	26.4	38.4	42.7	-4.2	-2.0	-2.2
d $\mathrm{Lt}_{11,42,8.5}$	70.3	1.56	24.1	38.5	40.4	-1.9	-2.0	0.1
dL $\mathrm{Lt}, 43,8.5$	70.3	1.56	24.0	38.1	40.3	-2.1	-2.0	-0.1
$\mathrm{dL}_{\text {t1, 44,8.5: }}$	70.3	1.56	23.6	39.0	39.9	-1.0	-2.0	1.0
$\mathrm{dL}_{\text {t1, 45,8.5 }}$	71.9	1.56	25.9	39.7	42.2	-2.4	-2.0	-0.4
$\mathrm{dL}_{\text {t1, 46,8.5 }}$	68.8	1.56	25.0	34.0	41.3	-7.3	-2.0	-5.3
dLti,47,8.5:	70.3	1.56	24.4	37.1	40.7	-3.6	-2.0	-1.6
$\mathrm{dL}_{\text {t1, 48,8.5 }}$	70.3	1.56	25.2	38.3	41.5	-3.3	-2.0	-1.3
$\mathrm{dL}_{\text {t1, 49,8.5 }}$	70.3	1.56	26.1	39.1	42.4	-3.3	-2.0	-1.3
dLti,50,8.5:	70.3	1.56	25.7	38.4	42.0	-3.7	-2.0	-1.7
dL $\mathrm{tal}, 51,8.5$	70.3	1.56	26.4	36.5	42.7	-6.2	-2.0	-4.2
dL $\mathrm{Lt}_{1,52,8.5}$	70.3	1.56	26.2	39.7	42.5	-2.8	-2.0	-0.8
dL $\mathrm{t1}, 53,$,	70.3	1.56	25.9	38.7	42.2	-3.5	-2.0	-1.5

Windlectric Inc.
Page 57 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 1,54,8.5}$:	70.3	1.56	26.6	39.7	42.9	-3.2	-2.0	-1.2
dLti,55,8.5:	71.9	1.56	26.4	38.3	42.7	-4.4	-2.0	-2.4
dL ${ }_{\mathrm{t} 1,56,8.5}$:	70.3	1.56	25.0	38.1	41.3	-3.1	-2.0	-1.1
dLti,57,8.5:	73.4	1.56	26.2	37.8	42.5	-4.7	-2.0	-2.7
dL $\mathrm{t}_{11,58,8,5}$	68.8	1.56	27.3	33.6	43.5	-9.9	-2.0	-7.9
$\mathrm{dL}_{\mathrm{t} 1,59,8.5}$:	70.3	1.56	27.0	37.3	43.3	-6.0	-2.0	-4.0
$\mathrm{dL}_{\mathrm{t} 2,1,8.5}$:	73.4	1.56	24.0	38.9	40.3	-1.4	-2.0	0.6
dL ${ }_{\text {t2, } 2,8.5}$:	73.4	1.56	23.7	38.5	40.0	-1.5	-2.0	0.5
dL $\mathrm{L}_{\mathrm{t}, 3,3.5}$:	73.4	1.56	24.0	40.0	40.3	-0.2	-2.0	1.8
dL ${ }_{\text {t2, } 2,8.5}$:	73.4	1.56	24.8	38.8	41.1	-2.4	-2.0	-0.4
$\mathrm{dL}_{\mathrm{t} 2,12,8.5}$:	73.4	1.56	24.5	39.3	40.8	-1.5	-2.0	0.5
$\mathrm{dL}_{\mathrm{t} 2,18,8.5}$:	73.4	1.56	23.5	39.9	39.8	0.1	-2.0	2.1
dL $\mathrm{L}_{\mathrm{t}, 1,19,8.5}$	73.4	1.56	24.8	38.6	41.1	-2.5	-2.0	-0.5
dL $\mathrm{L}_{\text {L2,20,8.5: }}$	73.4	1.56	25.5	39.3	41.8	-2.6	-2.0	-0.5
$\mathrm{dL}_{\mathrm{t} 2,23,8.5}$:	71.9	1.56	24.5	39.9	40.8	-0.8	-2.0	1.2
dL $\mathrm{L}_{\mathrm{t} 2,24,8.5}$:	90.6	1.56	25.1	43.4	41.4	2.0	-2.0	4.0
dL ${ }_{\text {t2,25, }, .5}$:	73.4	1.56	24.4	39.4	40.7	-1.2	-2.0	0.8
dL ${ }_{\text {t2, } 26,8,5}$:	73.4	1.56	24.6	39.2	41.0	-1.7	-2.0	0.3
dL $\mathrm{L}_{\mathrm{t}, 41,8,5 \text { : }}$	73.4	1.56	26.4	38.4	42.7	-4.2	-2.0	-2.2
dL ${ }_{\text {t2,45, }, .5}$:	71.9	1.56	25.9	39.7	42.2	-2.4	-2.0	-0.4
dL ${ }_{\text {t2, }, 55,8.5}$:	71.9	1.56	26.4	38.3	42.7	-4.4	-2.0	-2.4
dL ${ }_{\text {t2, } 27,8,5}$:	73.4	1.56	26.2	37.8	42.5	-4.7	-2.0	-2.7
$\mathrm{dL}_{\mathrm{t} 3,1,8.5}$:	143.8	1.56	27.5	40.9	43.8	-2.9	-2.0	-0.9
$\mathrm{dL}_{\mathrm{t} 3,2,8.5}$:	142.2	1.56	26.7	38.6	43.0	-4.4	-2.0	-2.4
dL ${ }_{\text {t3, }}$, 8.5 :	143.8	1.56	27.2	37.3	43.5	-6.2	-2.0	-4.2
dL ${ }_{\text {t } 3,4,8.5}$:	142.2	1.56	26.7	41.1	43.0	-1.9	-2.0	0.2
	142.2	1.56	26.9	41.4	43.2	-1.8	-2.0	0.2
dL ${ }_{\text {t3, } 6,8.5}$:	142.2	1.56	28.0	38.2	44.3	-6.1	-2.0	-4.1
dL $\mathrm{d}_{\mathrm{t}, 7,8.5}$:	142.2	1.56	26.7	44.2	43.0	1.2	-2.0	3.2
dL ${ }_{\text {t } 3,8,8,5}$:	142.2	1.56	27.3	40.3	43.6	-3.3	-2.0	-1.3
dL ${ }_{\text {t } 3,9,8.5}$:	140.6	1.56	28.3	40.4	44.6	-4.1	-2.0	-2.1
dL ${ }_{\text {t }}$,10,8.5:	142.2	1.56	27.2	39.9	43.5	-3.6	-2.0	-1.6
dL ${ }_{\text {t } 3,11,8.5}$:	140.6	1.56	26.4	40.7	42.7	-2.0	-2.0	0.1
dL $\mathrm{d}_{\mathrm{t}, 12,8.5}$:	142.2	1.56	27.3	41.0	43.6	-2.6	-2.0	-0.6
dL $\mathrm{L}_{\mathrm{t}, 13,8.5}$:	140.6	1.56	27.6	42.9	43.9	-1.0	-2.0	1.1
dL ${ }_{\text {t } 3,14,8.5}$	140.6	1.56	28.1	43.3	44.4	-1.1	-2.0	0.9
dL ${ }_{\text {t } 3,15,8.5}$:	140.6	1.56	28.0	43.9	44.3	-0.4	-2.0	1.6
dL ${ }_{\text {t }}^{\text {d,16,8.5: }}$	142.2	1.56	27.7	41.2	44.0	-2.8	-2.0	-0.7
dL ${ }_{\text {t } 3,17,8.5}$:	142.2	1.56	28.3	42.7	44.6	-2.0	-2.0	0.0
dL ${ }_{\text {t } 3,18,8.5}$:	142.2	1.56	27.0	40.9	43.3	-2.4	-2.0	-0.4
dL $\mathrm{L}_{\mathrm{t}, 19,8.5}$	142.2	1.56	27.8	39.4	44.1	-4.7	-2.0	-2.7
dL $\mathrm{L}_{\mathrm{t}, 20,8.5}$:	142.2	1.56	27.9	39.6	44.2	-4.6	-2.0	-2.6
dL $\mathrm{L}_{\mathrm{t}, 21,8.5}$:	140.6	1.56	28.0	43.5	44.3	-0.8	-2.0	1.2
dL ${ }_{\text {t } 3,22,8.5}$	142.2	1.56	28.2	44.1	44.5	-0.4	-2.0	1.7
dL $\mathrm{d}_{\mathrm{t}, 23,8,5}$	142.2	1.56	28.0	41.9	44.3	-2.3	-2.0	-0.3
dL $\mathrm{d}_{\mathrm{t}, 24,8.5}$	140.6	1.56	26.7	44.8	43.0	1.7	-2.0	3.8
dL ${ }_{\text {t } 3,25,8.5}$:	142.2	1.56	27.5	38.9	43.9	-5.0	-2.0	-2.9
dL $\mathrm{L}_{\mathrm{t}, 26,8.5}$:	142.2	1.56	27.7	43.6	44.0	-0.4	-2.0	1.6
dL $\mathrm{d}_{\mathrm{t}, 27,8,5}$	142.2	1.56	28.1	44.1	44.4	-0.3	-2.0	1.7
dL $\mathrm{L}_{\mathrm{t}, 28,8,5}$:	134.4	1.56	28.4	42.0	44.7	-2.7	-2.0	-0.7
dL $\mathrm{L}_{\mathrm{t}, 29,8.5}$:	135.9	1.56	29.3	37.1	45.6	-8.6	-2.0	-6.6
dL $\mathrm{L}_{\mathrm{t}, 3,3,8.5}$	140.6	1.56	29.3	39.8	45.6	-5.8	-2.0	-3.7
dL $\mathrm{L}_{\mathrm{t}, 31,8,5.5}$	140.6	1.56	27.7	42.0	44.0	-2.0	-2.0	0.0
dL ${ }_{\text {t3,32,8.5: }}$	140.6	1.56	27.7	42.6	44.0	-1.4	-2.0	0.7

Windlectric Inc.
Page 58 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 3,33,8.5}$:	142.2	1.56	28.1	42.4	44.4	-2.0	-2.0	0.0
dL $\mathrm{L}_{\mathrm{t}, 34,8.5}$:	140.6	1.56	27.7	42.3	44.0	-1.7	-2.0	0.3
$\mathrm{dL}_{\mathrm{t} 3,35,8.5}$:	142.2	1.56	28.3	39.0	44.6	-5.6	-2.0	-3.6
dLt3,36,8.5:	142.2	1.56	28.5	42.1	44.8	-2.7	-2.0	-0.7
dL $\mathrm{L}_{\mathrm{t}, 37,8,5 \text { : }}$	140.6	1.56	29.4	39.8	45.7	-5.9	-2.0	-3.9
dL $\mathrm{L}_{\mathrm{t}, 38,8.5}$:	140.6	1.56	28.4	42.1	44.7	-2.6	-2.0	-0.6
dL ${ }_{\text {t3,39, }, .5}$:	140.6	1.56	27.5	43.9	43.8	0.1	-2.0	2.1
dL $\mathrm{L}_{\mathrm{t}, 40,8,5}$:	140.6	1.56	29.6	42.3	45.9	-3.6	-2.0	-1.6
dL ${ }_{\text {t } 3,42,8.5}$	140.6	1.56	27.8	41.8	44.1	-2.3	-2.0	-0.3
dL $\mathrm{d}_{\mathrm{t}, 43,8.5}$:	142.2	1.56	27.7	39.1	44.0	-4.9	-2.0	-2.9
dL $\mathrm{L}_{\mathrm{t}, 44,8.5}$	143.8	1.56	27.3	38.9	43.6	-4.8	-2.0	-2.7
$\mathrm{dL}_{\mathrm{t} 3,45,8.5}$:	143.8	1.56	29.0	44.9	45.3	-0.4	-2.0	1.6
$\mathrm{dL}_{\mathrm{t}, 46,8,5}$:	139.1	1.56	29.3	41.9	45.6	-3.7	-2.0	-1.7
dL $\mathrm{L}_{\mathrm{t}, 47,8.5}$	142.2	1.56	28.2	37.6	44.5	-6.8	-2.0	-4.8
dL $\mathrm{L}_{\mathrm{t}, 48,8.5}$	142.2	1.56	28.7	40.5	45.0	-4.5	-2.0	-2.5
dL $\mathrm{d}_{\mathrm{t}, 49,8.5}$	140.6	1.56	29.3	39.3	45.6	-6.3	-2.0	-4.3
dL ${ }_{\text {t3,50, }, .5}$:	142.2	1.56	29.5	44.8	45.8	-1.0	-2.0	1.0
dL $\mathrm{d}_{\mathrm{t}, 51,8.5}$:	140.6	1.56	29.3	41.9	45.6	-3.7	-2.0	-1.7
dL $\mathrm{L}_{\mathrm{t}, 52,8,5}$	142.2	1.56	29.2	38.8	45.5	-6.7	-2.0	-4.7
dL ${ }_{\text {t3,53,8.5 }}$:	140.6	1.56	29.6	42.4	45.9	-3.5	-2.0	-1.4
dL $\mathrm{L}_{\mathrm{t}, 54,8.5}$:	142.2	1.56	29.5	42.9	45.8	-2.8	-2.0	-0.8
dL $\mathrm{d}_{\mathrm{t}, 55,8.5}$	140.6	1.56	29.4	43.0	45.7	-2.7	-2.0	-0.6
dL ${ }_{\text {t3,56,8.5 }}$:	140.6	1.56	28.6	41.4	44.9	-3.5	-2.0	-1.5
dL $\mathrm{d}_{\mathrm{t}, 57,8,5 \text { : }}$	143.8	1.56	28.7	39.9	45.0	-5.1	-2.0	-3.1
$\mathrm{dL}_{\mathrm{t}, 58,8,5}$:	140.6	1.56	30.5	40.9	46.8	-5.8	-2.0	-3.8
dL $\mathrm{d}_{\mathrm{t}, 59,8.5}$:	140.6	1.56	30.0	38.1	46.3	-8.3	-2.0	-6.2
dL ${ }_{\text {t } 4,41,8,5}$	175.0	1.56	29.0	36.6	45.3	-8.7	-2.0	-6.6
dL ${ }_{\text {t } 5,31,8.5}$:	232.8	1.56	27.9	34.6	44.3	-9.7	-2.1	-7.6
dL ${ }_{\text {t } 5,32,8,5}$:	232.8	1.56	28.0	34.1	44.4	-10.4	-2.1	-8.3
dL ${ }_{\text {t5,34,8.5 }}$:	232.8	1.56	28.0	34.5	44.4	-9.9	-2.1	-7.8
dLt5,37,8.5:	232.8	1.56	28.5	34.5	44.9	-10.4	-2.1	-8.3
dL ${ }_{\text {t } 5,54,8,5:}$	232.8	1.56	28.7	34.8	45.1	-10.4	-2.1	-8.3
dL $\mathrm{t}_{\text {6,31,8.5: }}$	309.4	1.56	27.2	37.2	43.8	-6.6	-2.1	-4.5
dL $\mathrm{dt}_{6,33,8.5}$:	307.8	1.56	27.8	35.6	44.3	-8.7	-2.1	-6.6
dL $\mathrm{d}_{\text {t }, 37,8.5}$:	309.4	1.56	28.2	35.8	44.7	-8.9	-2.1	-6.8
dLti,38,8.5:	307.8	1.56	27.7	38.3	44.3	-6.0	-2.1	-3.9
dL ${ }_{\text {t7,31,8.5: }}$	8020.8	1.56	-16.6	-10.5	12.7	-23.3	-5.0	-18.3

BIN 8.5: Tonal components determined - Compact

Spectrum	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{j} \text { k }}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	dL ${ }_{\text {tr, }, \text {, }}$
\#\#	[Hz]	[dB]										
1	73.4	-1.4	73.4	-1.4	143.8	-2.9	---	---	---	---	---	---
2	73.4	-1.5	73.4	-1.5	142.2	-4.4	---	---	---	---	---	---
3	73.4	-0.2	73.4	-0.2	143.8	-6.2	---	---	---	---	---	---
4	70.3	-0.9	---	---	142.2	-1.9	---	---	---	---	---	---
5	70.3	-0.9	---	---	142.2	-1.8	---	---	---	---	---	---
6	73.4	-2.4	73.4	-2.4	142.2	-6.1	---	---	---	---	---	---
7	70.3	0.5	---	---	142.2	1.2	---	---	---	---	---	---
8	70.3	-1.5	---	---	142.2	-3.3	---	---	---	---	---	---
9	68.8	-4.7	---	---	140.6	-4.1	---	---	---	---	---	---
10	70.3	-2.6	---	---	142.2	-3.6	---	---	---	---	---	---
11	70.3	-1.6	---	---	140.6	-2.0	---	---	---	---	---	---
12	73.4	-1.5	73.4	-1.5	142.2	-2.6	---	---	---	---	---	---

Windlectric Inc.

13	70.3	-2.4	---	---	140.6	-1.0	---	---	---	---	---	---
14	70.3	-5.5	---	---	140.6	-1.1	---	---	---	---	---	--
15	70.3	-5.0	---	---	140.6	-0.4	---	---	---	---	---	---
16	70.3	-4.1	---	---	142.2	-2.8	---	---	---	---	---	---
17	70.3	-3.0	---	---	142.2	-2.0	---	---	---	---	---	---
18	73.4	0.1	73.4	0.1	142.2	-2.4	---	---	---	---	---	---
19	73.4	-2.5	73.4	-2.5	142.2	-4.7	---	---	---	---	---	---
20	73.4	-2.6	73.4	-2.6	142.2	-4.6	---	---	---	---	---	---
21	70.3	-4.6	---	---	140.6	-0.8	---	---	---	---	---	---
22	70.3	-1.6	---	---	142.2	-0.4	---	---	---	---	---	---
23	71.9	-0.8	71.9	-0.8	142.2	-2.3	---	---	---	---	---	---
24	---	---	90.6	2.0	140.6	1.7	---	---	---	---	---	--
25	73.4	-1.2	73.4	-1.2	142.2	-5.0	---	---	---	---	---	---
26	73.4	-1.7	73.4	-1.7	142.2	-0.4	---	---	---	---	---	---
27	70.3	-1.3	---	---	142.2	-0.3	---	---	---	---	---	---
28	67.2	-8.0	---	---	134.4	-2.7	---	---	---	---	---	---
29	67.2	-9.2	---	---	135.9	-8.6	---	---	---	---	---	---
30	70.3	-3.7	---	---	140.6	-5.8	---	---	---	---	---	---
31	70.3	-3.8	---	---	140.6	-2.0	---	---	232.8	-9.7	309.4	-6.6
32	70.3	-3.0	---	---	140.6	-1.4	---	---	232.8	-10.4	---	---
33	70.3	-1.8	---	---	142.2	-2.0	---	---	---	---	307.8	-8.7
34	70.3	-2.0	---	---	140.6	-1.7	---	---	232.8	-9.9	---	---
35	70.3	-2.5	---	---	142.2	-5.6	---	---	---	---	---	---
36	70.3	-1.8	---	---	142.2	-2.7	---	---	---	---	---	---
37	70.3	-3.0	---	---	140.6	-5.9	---	---	232.8	-10.4	309.4	-8.9
38	70.3	-3.9	---	---	140.6	-2.6	---	---	---	---	307.8	-6.0
39	---	---	--	---	140.6	0.1	---	---	---	---	---	---
40	70.3	-6.1	---	---	140.6	-3.6	---	---	---	---	---	---
41	73.4	-4.2	73.4	-4.2	---	---	175.0	-8.7	---	---	---	---
42	70.3	-1.9	---	---	140.6	-2.3	---	---	---	---	---	---
43	70.3	-2.1	---	---	142.2	-4.9	---	---	--	---	---	---
44	70.3	-1.0	---	---	143.8	-4.8	---	---	---	---	---	---
45	71.9	-2.4	71.9	-2.4	143.8	-0.4	---	---	---	---	---	---
46	68.8	-7.3	---	---	139.1	-3.7	---	---	---	---	---	---
47	70.3	-3.6	---	---	142.2	-6.8	--	---	---	---	---	---
48	70.3	-3.3	---	---	142.2	-4.5	---	---	---	---	---	---
49	70.3	-3.3	--	---	140.6	-6.3	---	---	---	---	---	---
50	70.3	-3.7	---	---	142.2	-1.0	---	---	--	---	---	---
51	70.3	-6.2	---	---	140.6	-3.7	---	---	---	---	---	---
52	70.3	-2.8	---	---	142.2	-6.7	---	---	---	---	---	---
53	70.3	-3.5	---	---	140.6	-3.5	---	---	---	---	---	---
54	70.3	-3.2	---	---	142.2	-2.8	---	---	232.8	-10.4	---	---
55	71.9	-4.4	71.9	-4.4	140.6	-2.7	---	---	---	---	---	---
56	70.3	-3.1	---	---	140.6	-3.5	---	---	---	---	---	---
57	73.4	-4.7	73.4	-4.7	143.8	-5.1	---	---	---	---	---	---
58	68.8	-9.9	---	---	140.6	-5.8	---	---	---	---	---	---
59	70.3	-6.0	---	---	140.6	-8.3	---	---	---	---	---	---
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL} \mathrm{k}_{\mathrm{k}}[\mathrm{dB}]$	70.9	-2.9	85.9	-6.8	141.5	-2.7	175.0	-16.0	232.8	-15.4	309.3	-14.8
$\mathrm{L}_{\mathrm{a}}[\mathrm{dB}]$		-2.0		-2.0		-2.0		-2.0		-2.1		-2.1
$\mathrm{dL}_{\mathrm{a}, \mathrm{k}}[\mathrm{dB}]$		-0.9		-4.8		-0.7		-14.0		-13.3		-12.7
$\mathrm{K}_{\text {TN }}[\mathrm{dB}]$		0		0		0		0		0		0

BIN 8.5: Narrowband spectrum

Windlectric Inc.

Windlectric Inc.
Amherst Island Wind Project
Acoustic Test Report, WTG S29

BIN 9: Tonal components determined								
	Frequency	delta f	$\mathrm{L}_{\mathrm{pn}, \mathrm{avg}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pt}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pn}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\mathrm{aj}, \mathrm{j}, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dLtil, ${ }^{\text {a }}$	70.3	1.56	23.3	39.2	39.6	-0.4	-2.0	1.6
$\mathrm{dL}_{\mathrm{t} 1,2,9}$	70.3	1.56	23.5	39.5	39.8	-0.3	-2.0	1.7
$\mathrm{dL}_{\mathrm{t} 1,3,9}$:	70.3	1.56	22.5	38.7	38.8	0.0	-2.0	2.0
$\mathrm{dL}_{\mathrm{t} 1,4,9}$	70.3	1.56	23.1	38.7	39.4	-0.7	-2.0	1.3
$\mathrm{dL}_{\mathrm{t} 1,5,9}$:	70.3	1.56	23.3	39.2	39.6	-0.4	-2.0	1.6
dL $\mathrm{L}_{11,6,9}$	70.3	1.56	23.9	39.2	40.2	-1.0	-2.0	1.0
$\mathrm{dL}_{\mathrm{t} 1,7,9}$:	70.3	1.56	24.8	37.5	41.1	-3.6	-2.0	-1.6
$\mathrm{dL}_{\mathrm{t} 1,8,9}$:	73.4	1.56	25.2	40.7	41.5	-0.8	-2.0	1.2
$\mathrm{dL}_{\mathrm{t} 1,9,9}$	70.3	1.56	24.9	39.7	41.2	-1.5	-2.0	0.6
$\mathrm{dL}_{\text {ti,11,9: }}$	70.3	1.56	24.4	40.3	40.7	-0.4	-2.0	1.6
dLti,12,9:	70.3	1.56	24.5	38.9	40.8	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 1,13,9}$:	70.3	1.56	26.5	36.5	42.8	-6.4	-2.0	-4.4
$\mathrm{dL}_{\mathrm{t}_{11,14,9}}$	70.3	1.56	23.0	38.8	39.3	-0.5	-2.0	1.5
$\mathrm{dL}_{\mathrm{t} 1,15,9}$	70.3	1.56	23.9	38.5	40.2	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 1,16,9}$:	70.3	1.56	24.7	40.9	41.0	-0.1	-2.0	1.9
dL $\mathrm{Lt} 117,9$	73.4	1.56	23.3	40.2	39.6	0.5	-2.0	2.5
$\mathrm{dL}_{\mathrm{t} 1,18,9}$	71.9	1.56	25.9	39.5	42.2	-2.7	-2.0	-0.7
dLti1,19,9:	67.2	1.56	25.1	35.3	41.3	-6.0	-2.0	-4.0
$\mathrm{dL}_{\text {L1,21,9: }}$	70.3	1.56	24.8	40.3	41.1	-0.8	-2.0	1.2
$\mathrm{dL}_{\mathrm{t} 1,22,9}$:	70.3	1.56	23.4	39.9	39.7	0.2	-2.0	2.2
$\mathrm{dL}_{\mathrm{t}_{1,23,9}}$	70.3	1.56	23.9	39.4	40.2	-0.9	-2.0	1.1
$\mathrm{dL}_{\text {ti,24,9: }}$	70.3	1.56	26.1	39.4	42.4	-3.0	-2.0	-1.0
dL $\mathrm{Lt}, 25,9$	70.3	1.56	26.0	39.6	42.3	-2.7	-2.0	-0.7
$\mathrm{dL}_{\mathrm{t} 1,26,9}$	71.9	1.56	26.2	39.5	42.5	-3.1	-2.0	-1.1
$\mathrm{dL}_{\mathrm{t}_{11,28,9}}$	73.4	1.56	26.1	40.9	42.4	-1.4	-2.0	0.6
$\mathrm{dL}_{\mathrm{t} 1,29,9}$	70.3	1.56	24.8	38.9	41.1	-2.2	-2.0	-0.2
$\mathrm{dL}_{\mathrm{t} 1,30,9}$:	71.9	1.56	26.7	39.0	43.0	-4.0	-2.0	-2.0
dLtil31,9:	70.3	1.56	23.6	39.4	39.9	-0.5	-2.0	1.5
dLtil,32,9:	70.3	1.56	25.4	39.3	41.7	-2.5	-2.0	-0.4
$\mathrm{dL}_{\mathrm{t} 1,33,9}$:	70.3	1.56	25.4	39.7	41.7	-2.0	-2.0	0.0
$\mathrm{dL}_{\text {t1, } 34,9}$:	68.8	1.56	24.2	35.3	40.4	-5.1	-2.0	-3.1
$\mathrm{dL}_{\text {L1,35,9: }}$	70.3	1.56	25.7	40.6	42.0	-1.4	-2.0	0.6
dLti,36,9:	70.3	1.56	26.6	41.2	42.9	-1.8	-2.0	0.2
$\mathrm{dL}_{\text {L1, } 37,9}$	70.3	1.56	26.2	39.9	42.5	-2.6	-2.0	-0.6
	70.3	1.56	26.0	40.6	42.3	-1.8	-2.0	0.2
dLtil,39,9:	70.3	1.56	26.4	40.8	42.7	-1.9	-2.0	0.1
$\mathrm{dL}_{\mathrm{t}_{1140,9}}$	70.3	1.56	26.2	39.3	42.5	-3.2	-2.0	-1.2
$\mathrm{dL}_{\mathrm{L}_{1141,9}}$	70.3	1.56	25.3	39.4	41.6	-2.2	-2.0	-0.2
$\mathrm{dL}_{\mathrm{t} 1,42,9}$:	70.3	1.56	27.0	38.7	43.3	-4.6	-2.0	-2.6
$\mathrm{dL}_{\mathrm{t}_{1,43,9} \text { : }}$	73.4	1.56	26.7	39.8	43.0	-3.2	-2.0	-1.2
dLtitu4,9:	71.9	1.56	26.4	40.9	42.7	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t}_{1,45,9}}$	70.3	1.56	26.1	39.6	42.4	-2.9	-2.0	-0.9
$\mathrm{dL}_{\mathrm{t} 1,46,9}$	73.4	1.56	26.1	40.9	42.4	-1.5	-2.0	0.5
$\mathrm{dL}_{\mathrm{t}_{1147,9}}$	70.3	1.56	26.5	38.9	42.8	-3.9	-2.0	-1.9
dL ${ }_{\text {ti, 48,9: }}$	73.4	1.56	24.2	39.4	40.5	-1.1	-2.0	0.9
$\mathrm{dL}_{\mathrm{t} 1,49,9}$	73.4	1.56	25.3	40.2	41.6	-1.4	-2.0	0.6
$\mathrm{dL}_{\text {t1,50,9: }}$	71.9	1.56	23.4	40.5	39.7	0.9	-2.0	2.9
dLti1,51,9:	71.9	1.56	24.1	39.6	40.4	-0.8	-2.0	1.2
dL ${ }_{\text {t1,52,9: }}$	71.9	1.56	25.5	40.2	41.8	-1.6	-2.0	0.4
dLt1,53,9:	71.9	1.56	25.0	37.5	41.3	-3.9	-2.0	-1.9
$\mathrm{dL}_{\text {t1, 54,9: }}$	73.4	1.56	26.1	39.8	42.4	-2.6	-2.0	-0.6

Windlectric Inc.
Page 63 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\text {t1,55,9: }}$	73.4	1.56	23.9	39.6	40.2	-0.6	-2.0	1.4
dLt1,56,9:	73.4	1.56	25.1	39.1	41.4	-2.3	-2.0	-0.3
dLt1,57,9:	70.3	1.56	25.3	37.8	41.6	-3.8	-2.0	-1.8
dLt1,58,9:	71.9	1.56	26.8	38.9	43.1	-4.2	-2.0	-2.2
dL $\mathrm{tax,59,9}$	71.9	1.56	26.5	39.7	42.8	-3.1	-2.0	-1.1
$\mathrm{dL}_{\mathrm{t} 1,61,9}$:	68.8	1.56	27.0	37.3	43.2	-5.9	-2.0	-3.9
dL $\mathrm{tIT}, 62,9$	70.3	1.56	26.2	38.7	42.5	-3.8	-2.0	-1.8
dLti,6,9:	70.3	1.56	25.2	40.4	41.5	-1.1	-2.0	0.9
dLti1,65,9:	70.3	1.56	26.1	36.9	42.4	-5.5	-2.0	-3.5
dL $\mathrm{Lt}_{1,669}$:	70.3	1.56	27.4	39.8	43.7	-3.9	-2.0	-1.9
$\mathrm{dL}_{\text {t1,67,9: }}$	70.3	1.56	26.5	39.0	42.8	-3.8	-2.0	-1.8
$\mathrm{dL}_{\mathrm{t} 1,68,9}$	70.3	1.56	27.0	39.8	43.3	-3.5	-2.0	-1.5
$\mathrm{dL}_{\text {t1, } 70,9}$	70.3	1.56	26.8	40.9	43.1	-2.2	-2.0	-0.2
dLti, ${ }_{\text {l1,9: }}$	70.3	1.56	25.5	37.6	41.8	-4.2	-2.0	-2.2
dL $\mathrm{Lt}_{\text {t2,10,9: }}$	95.3	1.56	24.3	43.4	40.6	2.9	-2.0	4.9
dL $\mathrm{t}_{\text {t2,20,9: }}$	103.1	1.56	25.1	44.1	41.4	2.8	-2.0	4.8
$\mathrm{dL}_{\text {t3,1,9: }}$	142.2	1.56	27.1	42.3	43.4	-1.1	-2.0	0.9
$\mathrm{dL}_{\text {ti, } 2,9}$:	142.2	1.56	27.2	43.5	43.5	0.0	-2.0	2.0
dL ${ }_{\text {t } 3,3,9}$:	142.2	1.56	26.9	44.8	43.2	1.6	-2.0	3.6
$\mathrm{dL}_{\text {ti, } 4,9}$:	142.2	1.56	26.7	44.3	43.0	1.3	-2.0	3.3
dL ${ }_{\text {L } 3,5,9}$	142.2	1.56	27.0	42.6	43.3	-0.7	-2.0	1.3
$\mathrm{dL}_{\text {ti,6,9: }}$	142.2	1.56	27.3	41.5	43.6	-2.1	-2.0	-0.1
$\mathrm{dL}_{\mathrm{t} 3,7,9}$:	140.6	1.56	27.9	45.1	44.2	0.9	-2.0	2.9
$\mathrm{dL}_{\text {L3,8,9: }}$	142.2	1.56	27.8	42.9	44.1	-1.2	-2.0	0.8
$\mathrm{dL}_{\mathrm{t} 3,9,9}$	142.2	1.56	28.3	41.5	44.6	-3.2	-2.0	-1.2
dL ${ }_{\text {Li,10,9: }}$	142.2	1.56	26.6	46.2	42.9	3.2	-2.0	5.3
dL ${ }_{\text {L } 3,11,9}$	142.2	1.56	27.6	45.1	43.9	1.2	-2.0	3.2
$\mathrm{dL}_{\text {t } 3,12,9}$:	142.2	1.56	27.5	43.4	43.8	-0.4	-2.0	1.6
dL ${ }_{\text {t } 3,13,9}$:	140.6	1.56	29.0	43.7	45.3	-1.6	-2.0	0.5
$\mathrm{dL}_{\text {L } 3,14,9}$	142.2	1.56	27.2	40.9	43.5	-2.5	-2.0	-0.5
dLiz,15,9:	140.6	1.56	27.8	40.6	44.1	-3.6	-2.0	-1.5
$\mathrm{dL}_{\text {L } 3,16,9}$	142.2	1.56	27.9	45.0	44.2	0.8	-2.0	2.8
$\mathrm{dL}_{\mathrm{L} 3,17,9}$:	142.2	1.56	27.1	43.2	43.4	-0.3	-2.0	1.7
$\mathrm{dL}_{\text {ti,18,9: }}$	140.6	1.56	28.9	39.6	45.2	-5.7	-2.0	-3.7
$\mathrm{dL}_{\mathrm{t} 3,19,9}$	134.4	1.56	28.5	36.0	44.8	-8.8	-2.0	-6.8
	142.2	1.56	29.4	41.1	45.7	-4.5	-2.0	-2.5
$\mathrm{dL}_{\text {L3,21,9: }}$	140.6	1.56	28.6	42.5	44.9	-2.4	-2.0	-0.4
dLis,22,9:	140.6	1.56	27.4	44.9	43.7	1.2	-2.0	3.2
dL ${ }_{\text {L } 3,23,9}$	142.2	1.56	27.6	43.0	43.9	-0.9	-2.0	1.2
$\mathrm{dL}_{\text {L } 3,24,9}$	143.8	1.56	29.0	38.2	45.3	-7.1	-2.0	-5.1
$\mathrm{dL}_{\mathrm{t} 3,25,9}$:	142.2	1.56	29.2	41.2	45.5	-4.3	-2.0	-2.3
$\mathrm{dL}_{\mathrm{t}_{3,26,9}}$	140.6	1.56	29.2	41.1	45.5	-4.4	-2.0	-2.3
dL ${ }_{\text {L } 3,27,9}$	140.6	1.56	28.4	44.4	44.7	-0.3	-2.0	1.7
dL ${ }_{\text {L } 3,28,9}$	143.8	1.56	30.0	44.0	46.3	-2.3	-2.0	-0.3
$\mathrm{dL}_{\text {ti,29,9: }}$	140.6	1.56	28.4	45.1	44.7	0.4	-2.0	2.4
$\mathrm{dL}_{\mathrm{L} 3,30,9}$:	140.6	1.56	29.0	43.5	45.3	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 3,31,9}$	140.6	1.56	27.7	43.6	44.0	-0.4	-2.0	1.6
dL ${ }_{\text {ti,32,9: }}$	142.2	1.56	28.9	43.3	45.2	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{L} 3,33,9}$:	142.2	1.56	28.6	45.3	44.9	0.3	-2.0	2.3
$\mathrm{dL}_{\mathrm{t} 3,34,9}$	139.1	1.56	28.8	42.9	45.1	-2.2	-2.0	-0.2
dL ${ }_{\text {L } 3,35,9}$	142.2	1.56	29.4	46.6	45.7	0.9	-2.0	2.9
dL ${ }_{\text {ti,36,9: }}$	142.2	1.56	29.7	44.3	46.0	-1.7	-2.0	0.4
dLix,37,9:	140.6	1.56	30.2	42.3	46.5	-4.2	-2.0	-2.1
$\mathrm{dL}_{\mathrm{t} 3,389}$:	142.2	1.56	29.0	40.9	45.3	-4.4	-2.0	-2.4

ACOUSTICS
NOISE

Windlectric Inc.
Amherst Island Wind Project
Page 64 of 112
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 3,39,9}$:	142.2	1.56	29.5	40.5	45.8	-5.3	-2.0	-3.3
dLti3,40,9:	140.6	1.56	29.7	43.0	46.0	-3.0	-2.0	-0.9
$\mathrm{dL}_{\mathrm{t} 3,41,9}$	142.2	1.56	28.4	41.3	44.7	-3.5	-2.0	-1.4
dL ${ }_{\text {t } 3,42,9 \text { : }}$	140.6	1.56	29.7	41.4	46.0	-4.6	-2.0	-2.6
$\mathrm{dL}_{\mathrm{t} 3,43,9}$:	142.2	1.56	29.4	39.8	45.7	-5.9	-2.0	-3.9
$\mathrm{dL}_{\mathrm{t} 3,45,9}$:	140.6	1.56	29.3	44.0	45.6	-1.6	-2.0	0.4
$\mathrm{dL}_{\mathrm{t}, 46,9}$:	142.2	1.56	29.2	41.7	45.5	-3.8	-2.0	-1.8
$\mathrm{dL}_{\mathrm{t} 3,47,9}$	140.6	1.56	30.1	39.7	46.4	-6.7	-2.0	-4.7
dL ${ }_{\text {t } 3,48,9}$	140.6	1.56	28.0	36.1	44.3	-8.2	-2.0	-6.2
$\mathrm{dL}_{\mathrm{t} 3,49,9}$	142.2	1.56	28.4	41.6	44.7	-3.1	-2.0	-1.0
dL ${ }_{\text {ta, } 5,9}$:	140.6	1.56	27.2	40.4	43.5	-3.1	-2.0	-1.1
$\mathrm{dL}_{\mathrm{t} 3,51,9}$	140.6	1.56	27.7	39.1	44.0	-5.0	-2.0	-2.9
$\mathrm{dL}_{\mathrm{t} 3,52,9}$	142.2	1.56	28.5	42.5	44.8	-2.3	-2.0	-0.2
dL $\mathrm{L}_{\mathrm{t}, 53,9}$	140.6	1.56	28.5	44.6	44.8	-0.2	-2.0	1.8
$\mathrm{dL}_{\mathrm{t} 3,54,9}$	142.2	1.56	28.7	42.4	45.0	-2.6	-2.0	-0.6
$\mathrm{dL}_{\mathrm{t} 3,55,9}$:	140.6	1.56	27.8	42.0	44.1	-2.1	-2.0	-0.1
$\mathrm{dL}_{\mathrm{t} 3,56,9}$:	143.8	1.56	28.6	35.0	44.9	-9.8	-2.0	-7.8
dL $\mathrm{L}_{\mathrm{t}, 57,9}$	140.6	1.56	28.6	40.7	44.9	-4.3	-2.0	-2.2
dL ${ }_{\text {ta, } 5,9,9}$	140.6	1.56	29.8	42.1	46.1	-4.1	-2.0	-2.0
$\mathrm{dL}_{\mathrm{t} 3,59,9}$	140.6	1.56	29.0	41.4	45.3	-3.9	-2.0	-1.9
dL $\mathrm{L}_{\mathrm{t}, 60,9}$	139.1	1.56	29.0	39.7	45.3	-5.5	-2.0	-3.5
$\mathrm{dL}_{\mathrm{t} 3,619}$:	140.6	1.56	29.4	39.3	45.7	-6.4	-2.0	-4.4
$\mathrm{dL}_{\mathrm{t} 3,62,9}$:	140.6	1.56	30.2	41.6	46.5	-4.9	-2.0	-2.8
dL $\mathrm{LL}_{\mathrm{t}, 64,9}$	139.1	1.56	31.3	40.6	47.6	-7.0	-2.0	-5.0
$\mathrm{dL}_{\mathrm{t} 3,65,9}$	140.6	1.56	29.4	41.6	45.7	-4.2	-2.0	-2.2
dL $\mathrm{L}_{\mathrm{t}, 66,9}$	142.2	1.56	30.5	39.7	46.8	-7.2	-2.0	-5.1
dL ${ }_{\text {ti,67,9: }}$	140.6	1.56	29.8	40.8	46.1	-5.4	-2.0	-3.4
$\mathrm{dL}_{\mathrm{t} 3,68,9}$:	142.2	1.56	30.5	41.9	46.8	-4.9	-2.0	-2.8
$\mathrm{dL}_{\mathrm{L} 3,69,9}$	140.6	1.56	29.8	44.5	46.1	-1.6	-2.0	0.4
$\mathrm{dL}_{\mathrm{t} 3,70,9}$	142.2	1.56	29.8	44.5	46.1	-1.7	-2.0	0.4
dL ${ }_{\text {t } 3,71,9}$	140.6	1.56	28.8	42.3	45.1	-2.8	-2.0	-0.8
dLLt4,44,9:	175.0	1.56	29.7	41.8	46.0	-4.2	-2.0	-2.2
$\mathrm{dL}_{\text {t4,63,9: }}$	175.0	1.56	29.6	41.0	45.9	-4.8	-2.0	-2.8
dL $\mathrm{L}_{\text {t, 20,9: }}$	232.8	1.56	29.4	36.7	45.8	-9.1	-2.1	-7.1
$\mathrm{dL}_{\text {t5,22,9: }}$	232.8	1.56	27.9	35.2	44.4	-9.2	-2.1	-7.1
dLt5,25,9:	232.8	1.56	29.0	35.5	45.5	-10.0	-2.1	-7.9
dL $\mathrm{L}_{\text {t5,29,9: }}$	232.8	1.56	28.7	36.2	45.2	-9.0	-2.1	-6.9
dL ${ }_{\text {t } 5,37,9}$	232.8	1.56	29.1	36.8	45.6	-8.8	-2.1	-6.7
dLt5,44,9:	232.8	1.56	29.5	37.8	45.9	-8.1	-2.1	-6.0
$\mathrm{dL}_{\text {t5,45,9: }}$	232.8	1.56	29.4	37.2	45.8	-8.6	-2.1	-6.5
dL L $_{\text {t5,46,9: }}$	232.8	1.56	28.9	35.4	45.3	-10.0	-2.1	-7.9
$\mathrm{dL}_{\text {t5,47,9: }}$	232.8	1.56	29.7	36.6	46.1	-9.5	-2.1	-7.5
dLt5,55,9:	232.8	1.56	28.4	35.8	44.8	-9.0	-2.1	-7.0
dLt5,61,9:	232.8	1.56	28.1	35.9	44.5	-8.7	-2.1	-6.6
$\mathrm{dL}_{\text {t5,62,9: }}$	232.8	1.56	30.4	36.5	46.8	-10.4	-2.1	-8.3
dL $\mathrm{L}_{\text {t5,63,9: }}$	232.8	1.56	30.0	36.2	46.4	-10.3	-2.1	-8.2
dL ${ }_{\text {t5,65,9: }}$	232.8	1.56	29.9	36.6	46.4	-9.8	-2.1	-7.7
dLt5,70,9:	232.8	1.56	29.9	36.4	46.4	-10.0	-2.1	-8.0
$\mathrm{dL}_{\text {t5,71,9: }}$	232.8	1.56	29.0	35.4	45.4	-10.0	-2.1	-7.9
dL $\mathrm{L}_{\mathrm{t}, 22,9}$	307.8	1.56	27.3	37.8	43.8	-6.0	-2.1	-3.9
dL ${ }_{\text {t6,25,9: }}$	309.4	1.56	28.8	38.3	45.3	-7.1	-2.1	-5.0
dL $\mathrm{L}_{\text {t, } 50,9}$:	323.5	1.56	27.6	36.3	44.1	-7.8	-2.1	-5.7
dL $\mathrm{L}_{\text {t, } 5,9,9}$	325.0	1.56	27.4	33.8	44.0	-10.3	-2.1	-8.1
dL ${ }_{\text {t6,62,9: }}$	325.0	1.56	29.1	38.3	45.7	-7.4	-2.1	-5.3

Windlectric Inc.
Page 65 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 756,9:}$	7753.6	1.56	-16.3	-10.2	12.8	-23.0	-5.0	-18.1
$\mathrm{dL}_{\mathrm{t} 7,69,9:}$	7623.9	1.56	-16.4	-10.1	12.6	-22.6	-5.0	-17.7
$\mathrm{dL}_{\mathrm{t} 8,33,9}$	8064.6	1.56	-17.2	-9.6	12.1	-21.7	-5.0	-16.7
$\mathrm{dL}_{\mathrm{t8}, 4,9:}$	8000.5	1.56	-17.0	-10.9	12.3	-23.2	-5.0	-18.2
$\mathrm{dL}_{\mathrm{t8}, 56,9:}$	7753.6	1.56	-16.3	-10.2	12.8	-23.0	-5.0	-18.1

BIN 9: Tonal components determined - Compact

Spectrum	f_{T}	dLtn, ${ }_{\text {, }}$,	$\mathrm{f}_{\mathbf{T}}$	dLtn, $\mathrm{j}_{\text {, }}$	f_{T}	dL ${ }_{\text {tn, }, \mathrm{k}}$	f_{T}	dL ${ }_{\text {tn, }, \text {, }}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	dLtn,j,k
\#\#	[Hz]	[dB]										
1	70.3	-0.4	---	---	142.2	-1.1	---	---	---	---	---	---
2	70.3	-0.3	---	---	142.2	0.0	---	---	---	---	---	---
3	70.3	0.0	---	---	142.2	1.6	---	---	---	---	---	---
4	70.3	-0.7	---	---	142.2	1.3	---	---	---	---	---	--
5	70.3	-0.4	---	---	142.2	-0.7	---	---	---	---	---	--
6	70.3	-1.0	---	---	142.2	-2.1	---	---	---	---	---	---
7	70.3	-3.6	---	---	140.6	0.9	---	---	---	---	---	---
8	73.4	-0.8	---	---	142.2	-1.2	---	---	---	---	---	---
9	70.3	-1.5	---	---	142.2	-3.2	---	---	---	---	---	---
10	---	---	95.3	2.9	142.2	3.2	---	---	---	---	---	---
11	70.3	-0.4	---	---	142.2	1.2	---	---	---	---	---	---
12	70.3	-1.8	--	---	142.2	-0.4	---	---	---	---	---	---
13	70.3	-6.4	---	---	140.6	-1.6	---	---	---	---	---	---
14	70.3	-0.5	---	---	142.2	-2.5	---	---	---	---	---	---
15	70.3	-1.8	---	---	140.6	-3.6	---	---	---	---	---	---
16	70.3	-0.1	---	---	142.2	0.8	---	---	---	---	---	---
17	73.4	0.5	---	---	142.2	-0.3	---	---	---	---	---	---
18	71.9	-2.7	---	---	140.6	-5.7	---	---	---	---	---	---
19	67.2	-6.0	---	---	134.4	-8.8	---	---	---	---	---	---
20	---	---	103.1	2.8	142.2	-4.5	---	---	232.8	-9.1	---	---
21	70.3	-0.8	---	---	140.6	-2.4	---	---	---	---	---	---
22	70.3	0.2	---	---	140.6	1.2	---	---	232.8	-9.2	307.8	-6.0
23	70.3	-0.9	---	---	142.2	-0.9	---	---	---	---	---	---
24	70.3	-3.0	---	---	143.8	-7.1	---	---	---	---	---	---
25	70.3	-2.7	---	---	142.2	-4.3	---	---	232.8	-10.0	309.4	-7.1
26	71.9	-3.1	---	---	140.6	-4.4	---	---	---	---	---	---
27	---	---	---	---	140.6	-0.3	---	---	---	---	---	---
28	73.4	-1.4	---	---	143.8	-2.3	---	---	---	---	---	---
29	70.3	-2.2	---	---	140.6	0.4	---	---	232.8	-9.0	---	---
30	71.9	-4.0	---	---	140.6	-1.8	---	---	--	---	---	---
31	70.3	-0.5	---	---	140.6	-0.4	---	---	---	---	---	---
32	70.3	-2.5	---	---	142.2	-1.8	---	---	--	---	---	---
33	70.3	-2.0	---	---	142.2	0.3	---	---	---	---	---	---
34	68.8	-5.1	---	--	139.1	-2.2	---	---	---	---	---	---
35	70.3	-1.4	---	---	142.2	0.9	---	---	---	---	---	---
36	70.3	-1.8	---	---	142.2	-1.7	---	---	---	---	---	---
37	70.3	-2.6	---	---	140.6	-4.2	---	---	232.8	-8.8	---	---
38	70.3	-1.8	---	---	142.2	-4.4	---	---	---	---	---	---
39	70.3	-1.9	---	---	142.2	-5.3	---	---	---	---	---	---
40	70.3	-3.2	---	---	140.6	-3.0	---	---	---	---	---	---
41	70.3	-2.2	---	---	142.2	-3.5	---	---	---	---	---	---
42	70.3	-4.6	---	---	140.6	-4.6	---	---	---	---	---	---
43	73.4	-3.2	---	---	142.2	-5.9	---	---	---	---	---	---
44	71.9	-1.8	---	---	---	---	175.0	-4.2	232.8	-8.1	---	---
45	70.3	-2.9	---	---	140.6	-1.6	---	---	232.8	-8.6	---	---

NOISE

Windlectric Inc.
Page 66 of 112
Amherst Island Wind Project

46	73.4	-1.5	---	---	142.2	-3.8	---	---	232.8	-10.0	---	---
47	70.3	-3.9	---	---	140.6	-6.7	---	---	232.8	-9.5	---	---
48	73.4	-1.1	---	---	140.6	-8.2	---	---	---	---	---	---
49	73.4	-1.4	---	---	142.2	-3.1	---	---	---	---	---	---
50	71.9	0.9	---	---	140.6	-3.1	---	---	---	---	323.5	-7.8
51	71.9	-0.8	---	---	140.6	-5.0	---	---	---	---	---	---
52	71.9	-1.6	---	---	142.2	-2.3	---	---	---	---	---	---
53	71.9	-3.9	---	---	140.6	-0.2	---	---	---	---	325.0	-10.3
54	73.4	-2.6	---	---	142.2	-2.6	---	---	---	---	---	---
55	73.4	-0.6	---	---	140.6	-2.1	---	---	232.8	-9.0	---	---
56	73.4	-2.3	---	---	143.8	-9.8	---	---	---	---	---	---
57	70.3	-3.8	---	---	140.6	-4.3	---	---	---	---	---	---
58	71.9	-4.2	---	---	140.6	-4.1	---	---	---	---	---	---
59	71.9	-3.1	---	---	140.6	-3.9	---	---	---	---	---	---
60	---	---	---	---	139.1	-5.5	---	---	---	---	---	---
61	68.8	-5.9	---	---	140.6	-6.4	---	---	232.8	-8.7	---	---
62	70.3	-3.8	---	---	140.6	-4.9	---	---	232.8	-10.4	325.0	-7.4
63	70.3	-1.1	---	---	---	---	175.0	-4.8	232.8	-10.3	---	---
64	---	---	---	---	139.1	-7.0	---	---	---	---	---	---
65	70.3	-5.5	---	---	140.6	-4.2	---	---	232.8	-9.8	---	---
66	70.3	-3.9	---	---	142.2	-7.2	---	---	---	---	---	---
67	70.3	-3.8	---	---	140.6	-5.4	---	---	---	---	---	---
68	70.3	-3.5	---	---	142.2	-4.9	---	---	---	---	---	---
69	---	---	---	---	140.6	-1.6	---	---	---	---	---	---
70	70.3	-2.2	---	--	142.2	-1.7	---	---	232.8	-10.0	---	---
71	70.3	-4.2	---	---	140.6	-2.8	---	---	232.8	-10.0	---	---
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL}_{\mathrm{k}}[\mathrm{dB}]$	70.9	-2.3	95.4	-11.2	141.4	-2.2	175.0	-14.9	232.8	-13.6	308.6	-14.8
$\mathrm{La}_{\text {a }}[\mathrm{dB}]$		-2.0		-2.0		-2.0		-2.0		-2.1		-2.1
$\mathrm{dL}_{\mathrm{a}, \mathrm{k}}[\mathrm{dB}]$		-0.3		-9.2		-0.2		-12.9		-11.5		-12.7
$\mathrm{K}_{\text {ts }}[\mathrm{dB}$]		0		0		0		0		0		0

?

BIN 9: Narrowband spectrum

BIN 9: Narrowband spectrum

Windlectric Inc.

BIN 9: Narrowband spectrum

Windlectric Inc.
Page 69 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

BIN 9.5: Tonal components determined

	Frequency	delta f	$\mathrm{L}_{\mathrm{pr}, \mathrm{avg}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pt}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pn}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\mathrm{aj}, \mathrm{j}, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
$\mathrm{dL}_{\mathrm{t} 1,1,9.5}$:	70.3	1.56	25.0	38.5	41.3	-2.8	-2.0	-0.8
$\mathrm{dL}_{\text {L1,2,9.5: }}$	70.3	1.56	24.7	37.4	41.0	-3.6	-2.0	-1.6
$\mathrm{dL}_{\mathrm{t} 1,3,9.5}$:	70.3	1.56	24.1	39.6	40.4	-0.8	-2.0	1.2
dLti, de, $^{\text {a }}$:	70.3	1.56	24.4	39.9	40.7	-0.9	-2.0	1.1
$\mathrm{dL}_{\mathrm{t} 1,5,9.5}$:	73.4	1.56	23.5	41.2	39.8	1.4	-2.0	3.4
dLti,6,9.5:	70.3	1.56	25.4	39.0	41.7	-2.8	-2.0	-0.8
$\mathrm{dL}_{\text {L1,7,9.5 }}$	68.8	1.56	27.0	38.0	43.3	-5.2	-2.0	-3.2
$\mathrm{dL}_{\text {t1, }, \text {, }, 9.5}$	70.3	1.56	23.3	40.9	39.6	1.3	-2.0	3.3
dLti, $9,9.5$:	70.3	1.56	22.5	40.0	38.8	1.2	-2.0	3.2
dL ${ }_{\text {ti,10,9.5: }}$	70.3	1.56	23.6	39.1	39.9	-0.8	-2.0	1.2
dL ${ }_{\text {ti,11,9,5: }}$	70.3	1.56	23.7	40.1	40.0	0.1	-2.0	2.1
$\mathrm{dL}_{\mathrm{t} 1,12,9,5:}$	70.3	1.56	23.5	40.4	39.8	0.6	-2.0	2.6
$\mathrm{dL}_{\mathrm{t} 1,13,9,5}$	70.3	1.56	25.6	37.8	41.9	-4.1	-2.0	-2.1
dL ${ }_{\text {ti,14,9,5: }}$	71.9	1.56	25.4	39.0	41.7	-2.8	-2.0	-0.8
$\mathrm{dL}_{\mathrm{t} 1,15,9,5}$	70.3	1.56	22.7	39.1	39.0	0.1	-2.0	2.1
d $\mathrm{d}_{\mathrm{t} 1,16,9.5}$	70.3	1.56	23.7	38.9	40.0	-1.1	-2.0	0.9
dL ${ }_{\text {ti,17,9,5: }}$	70.3	1.56	23.6	40.6	39.9	0.7	-2.0	2.7
$\mathrm{dL}_{\mathrm{t} 1,18,9,5}$	70.3	1.56	24.0	40.6	40.4	0.2	-2.0	2.2
$\mathrm{dL}_{\mathrm{t} 1,19,9.5}$	70.3	1.56	25.5	39.0	41.8	-2.8	-2.0	-0.8
$\mathrm{dL}_{\mathrm{t} 1,20,9.5}$	67.2	1.56	25.4	33.7	41.7	-8.0	-2.0	-6.0
dL ${ }_{\text {ti,21,9,5: }}$	68.8	1.56	24.7	34.3	40.9	-6.6	-2.0	-4.6
$\mathrm{dL}_{\mathrm{t} 1,22,9.5}$	68.8	1.56	26.5	33.2	42.8	-9.6	-2.0	-7.6
dL ${ }_{\text {t1,24,9,5: }}$	70.3	1.56	25.3	41.3	41.6	-0.2	-2.0	1.8
$\mathrm{dL}_{\mathrm{t} 1,25,9,5}$	70.3	1.56	23.8	39.9	40.1	-0.2	-2.0	1.8
$\mathrm{dL}_{\mathrm{t} 1,26,9,5:}$	70.3	1.56	24.1	40.3	40.4	-0.1	-2.0	1.9
dL ${ }_{\text {t1,27,9,5: }}$	70.3	1.56	26.4	39.3	42.7	-3.4	-2.0	-1.4
$\mathrm{dL}_{\mathrm{t} 1,29,9,5:}$	70.3	1.56	27.3	39.2	43.6	-4.5	-2.0	-2.5
dL $\mathrm{dt}_{\text {t, } 30,9.5:}$	82.8	1.56	26.4	39.6	42.7	-3.1	-2.0	-1.0
dL $\mathrm{dt}_{\text {t }, 31,9.5}$	70.3	1.56	26.8	40.1	43.1	-3.0	-2.0	-1.0
$\mathrm{dL}_{\mathrm{t} 1,32,9.5}$	68.8	1.56	26.2	34.7	42.4	-7.6	-2.0	-5.6
$\mathrm{dL}_{\mathrm{t} 1,33,9.5}$	70.3	1.56	26.2	40.9	42.5	-1.6	-2.0	0.4
$\mathrm{dL}_{\mathrm{t} 1,34,9,5}$	73.4	1.56	26.0	41.1	42.3	-1.1	-2.0	0.9
d $\mathrm{L}_{\mathrm{t} 1,35,9.5}$	71.9	1.56	25.0	39.3	41.3	-2.0	-2.0	0.0
$\mathrm{dL}_{\mathrm{t} 1,36,9.5}$	71.9	1.56	25.4	40.0	41.7	-1.7	-2.0	0.3
$\mathrm{dL}_{\mathrm{t} 1,37,9,5}$	71.9	1.56	26.1	39.5	42.4	-2.9	-2.0	-0.9
$\mathrm{dL}_{\mathrm{t} 1,39,9.5}$	71.9	1.56	25.7	38.4	42.0	-3.6	-2.0	-1.6
dL ${ }_{\text {ti, }}^{10,9,5:}$	71.9	1.56	24.1	40.4	40.4	0.0	-2.0	2.0
dL ${ }_{\text {t1,41,9.5: }}$	71.9	1.56	24.6	40.4	40.9	-0.5	-2.0	1.5
$\mathrm{dL}_{\mathrm{t} 1,42,9,5:}$	71.9	1.56	23.9	37.1	40.2	-3.2	-2.0	-1.2
dL ${ }_{\text {t1, }}$, $3,9.5$:	70.3	1.56	25.6	38.7	41.9	-3.2	-2.0	-1.2
dL ${ }_{\text {ti, 44,9,5: }}$	70.3	1.56	25.8	40.0	42.1	-2.2	-2.0	-0.2
$\mathrm{dL}_{\mathrm{t} 1,45,9,5}$	70.3	1.56	26.9	35.6	43.2	-7.7	-2.0	-5.7
$\mathrm{dL}_{\mathrm{t} 1,46,9.5}$	70.3	1.56	25.3	38.1	41.6	-3.5	-2.0	-1.5
$\mathrm{dL}_{\mathrm{t} 1,47,9,5}$	68.8	1.56	24.6	35.7	40.9	-5.2	-2.0	-3.2
	70.3	1.56	25.9	37.8	42.2	-4.4	-2.0	-2.4
dL ${ }_{\text {t1, 49,9,5: }}$	70.3	1.56	24.6	38.3	40.9	-2.7	-2.0	-0.7
$\mathrm{dL}_{\mathrm{t} 1,50,9.5}$:	68.8	1.56	25.0	37.7	41.2	-3.5	-2.0	-1.5
$\mathrm{dL}_{\mathrm{t} 1,51,9.5}$	67.2	1.56	25.8	31.9	42.1	-10.2	-2.0	-8.1
$\mathrm{dL}_{\mathrm{t} 1,52,9.5}$	68.8	1.56	25.4	34.7	41.6	-6.9	-2.0	-4.9
d $\mathrm{L}_{\mathrm{t} 1,53,9.5}$	70.3	1.56	26.2	38.6	42.5	-3.9	-2.0	-1.9
$\mathrm{dL}_{\mathrm{t} 1,54,9,5}$	71.9	1.56	27.1	40.1	43.4	-3.4	-2.0	-1.4

ACOUSTICS

Windlectric Inc.
Page 70 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 1,55,9.5}$:	70.3	1.56	26.3	41.0	42.6	-1.7	-2.0	0.3
dLtı,56,9.5:	70.3	1.56	27.1	39.9	43.4	-3.6	-2.0	-1.6
dL ${ }_{\text {t1,57,9,5: }}$	71.9	1.56	25.3	39.9	41.6	-1.7	-2.0	0.3
dLti,58,9,5:	73.4	1.56	26.1	41.0	42.4	-1.4	-2.0	0.6
$\mathrm{dL}_{\mathrm{t} 1,59,9.5}$	71.9	1.56	26.6	40.1	42.9	-2.8	-2.0	-0.8
dL $\mathrm{t}_{\mathrm{t}, 60,9.5}$:	71.9	1.56	25.7	35.9	42.0	-6.1	-2.0	-4.1
$\mathrm{dL}_{\mathrm{t} 1,61,9.5}$:	73.4	1.56	25.3	40.0	41.6	-1.6	-2.0	0.4
$\mathrm{dL}_{\mathrm{t} 1,62,9.5}$:	70.3	1.56	25.2	41.0	41.5	-0.6	-2.0	1.4
dLti,63,9.5:	70.3	1.56	26.2	37.0	42.5	-5.5	-2.0	-3.5
dL ${ }_{\text {t1,64,9.5: }}$	70.3	1.56	24.2	40.0	40.5	-0.5	-2.0	1.5
$\mathrm{dL}_{\mathrm{t} 1,65,9.5}$	70.3	1.56	24.7	36.7	41.0	-4.4	-2.0	-2.4
$\mathrm{dL}_{\mathrm{t} 1,66,9.5}$:	73.4	1.56	24.4	40.4	40.7	-0.3	-2.0	1.7
dL ${ }_{\text {ti, } 67,9.5}$:	68.8	1.56	23.4	39.0	39.6	-0.6	-2.0	1.4
dLti,68,9.5:	68.8	1.56	25.6	34.4	41.8	-7.4	-2.0	-5.4
dL $\mathrm{L}_{\mathrm{t}, 69,9.5}$	71.9	1.56	26.3	40.0	42.6	-2.6	-2.0	-0.6
dL $\mathrm{L}_{\mathrm{t}, 70,9,5}$	71.9	1.56	26.4	38.7	42.7	-4.0	-2.0	-2.0
	68.8	1.56	24.7	35.3	40.9	-5.6	-2.0	-3.6
dL ${ }_{\text {t1,72,9.5: }}$	68.8	1.56	26.4	33.9	42.7	-8.7	-2.0	-6.7
dLLt,73,9.5:	71.9	1.56	27.2	39.0	43.5	-4.4	-2.0	-2.4
dL ${ }_{\text {t1, 74,9.5: }}$	73.4	1.56	26.3	38.3	42.6	-4.3	-2.0	-2.3
dLti,75,9.5:	71.9	1.56	25.5	38.6	41.8	-3.2	-2.0	-1.2
dL ${ }_{\text {ti,76,9,5: }}$	70.3	1.56	25.6	38.7	41.9	-3.2	-2.0	-1.2
$\mathrm{dL}_{\mathrm{t} 1,77,9.5}$	68.8	1.56	25.8	34.8	42.0	-7.2	-2.0	-5.2
dL ${ }_{\text {t1,79,9,5: }}$	70.3	1.56	26.0	39.9	42.3	-2.4	-2.0	-0.4
dL $\mathrm{t}_{\mathrm{t}, 80,9.5}$	70.3	1.56	26.3	35.6	42.6	-7.0	-2.0	-5.0
dLti,81,9.5:	70.3	1.56	27.0	39.4	43.3	-3.9	-2.0	-1.9
dLti,82,9.5:	71.9	1.56	27.5	39.7	43.8	-4.2	-2.0	-2.2
dL ${ }_{\text {t1,83,9,5: }}$	70.3	1.56	24.7	33.8	41.0	-7.3	-2.0	-5.3
dL ${ }_{\text {t1, }, 84,9.5}$	70.3	1.56	25.7	38.7	42.0	-3.3	-2.0	-1.3
dL ${ }_{\mathrm{t} 1,85,9,5}$	70.3	1.56	26.3	34.7	42.6	-7.9	-2.0	-5.9
dLti,86,9.5:	70.3	1.56	25.0	37.8	41.3	-3.5	-2.0	-1.5
	70.3	1.56	25.1	39.5	41.4	-1.9	-2.0	0.1
dL $\mathrm{t}_{\mathrm{t}, 88,9,5}$	70.3	1.56	24.8	38.4	41.1	-2.7	-2.0	-0.7
dLL ${ }_{\text {t1,89,9.5: }}$	70.3	1.56	24.3	38.3	40.6	-2.3	-2.0	-0.3
dL $\mathrm{L}_{\mathrm{t}, 2,23,9.5}$	93.8	1.56	24.1	44.6	40.4	4.2	-2.0	6.2
dLL2,30,9.5:	82.8	1.56	26.4	39.6	42.7	-3.1	-2.0	-1.0
dL $\mathrm{L}_{\mathrm{t}, 1,9,5}$:	142.2	1.56	28.0	42.4	44.3	-1.9	-2.0	0.1
dL $\mathrm{L}_{\text {t } 3,2,9,5:}$	142.2	1.56	27.9	44.1	44.2	-0.1	-2.0	1.9
dLi3,3,9.5:	142.2	1.56	26.9	44.6	43.2	1.4	-2.0	3.4
dL $\mathrm{L}_{\mathrm{t}, 4,4,5: 5}$	140.6	1.56	27.8	44.3	44.1	0.2	-2.0	2.2
dL ${ }_{\text {l3,5,9,5: }}$	142.2	1.56	27.1	45.4	43.4	2.0	-2.0	4.1
dL $\mathrm{L}_{\mathrm{t}, 6,9,5:}$	140.6	1.56	28.3	44.6	44.6	0.0	-2.0	2.0
dL ${ }_{\text {ti, }, 7,9.5}$	140.6	1.56	29.3	45.2	45.6	-0.5	-2.0	1.5
dLiz,8,9.5:	142.2	1.56	27.4	45.4	43.7	1.7	-2.0	3.8
dL ${ }_{\text {t3,9,9,5: }}$	140.6	1.56	27.0	44.7	43.3	1.4	-2.0	3.4
dL $\mathrm{L}_{\mathrm{t}, 10,9,5}$	140.6	1.56	27.4	44.5	43.7	0.8	-2.0	2.9
$\mathrm{dL}_{\mathbf{t 3 , 1 1 , 9 . 5}}$:	140.6	1.56	28.1	46.0	44.4	1.5	-2.0	3.5
dL ${ }_{\text {t3,12,9,5: }}$	142.2	1.56	27.9	45.7	44.2	1.5	-2.0	3.5
dL $\mathrm{L}_{\mathbf{1 3 , 1 3 , 9 , 5} \text { : }}$	140.6	1.56	28.8	38.5	45.1	-6.7	-2.0	-4.7
dL $\mathrm{L}_{\mathrm{t}, 14,9,5}$	140.6	1.56	28.6	43.1	44.9	-1.8	-2.0	0.2
dL ${ }_{\text {t3,15,9,5: }}$	140.6	1.56	27.4	43.5	43.7	-0.3	-2.0	1.8
dL ${ }_{\text {t3,16,9.5: }}$	140.6	1.56	28.1	44.0	44.4	-0.4	-2.0	1.6
dL ${ }_{\text {t3,17,9.5: }}$	140.6	1.56	27.7	43.2	44.0	-0.8	-2.0	1.2
dL ${ }_{\text {t3,18,9,5: }}$	140.6	1.56	28.2	41.5	44.5	-3.0	-2.0	-1.0

Windlectric Inc.
Amherst Island Wind Project
Page 71 of 112
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t}, 19,9.5}$:	140.6	1.56	28.9	43.8	45.2	-1.3	-2.0	0.7
dL $\mathrm{L}_{\mathrm{t}, 20,9.5}$	139.1	1.56	28.7	42.2	45.0	-2.8	-2.0	-0.8
$\mathrm{dL}_{\mathrm{t}, 22,9.5}$:	139.1	1.56	29.9	46.3	46.2	0.2	-2.0	2.2
dLite23,9.5:	142.2	1.56	26.3	46.6	42.6	3.9	-2.0	6.0
$\mathrm{dL}_{\mathrm{t} 3,24,9.5}$:	142.2	1.56	29.1	39.3	45.4	-6.1	-2.0	-4.1
dL ${ }_{\text {t } 3,25,9.5}$:	140.6	1.56	27.8	42.7	44.1	-1.4	-2.0	0.6
dL ${ }_{\text {t } 3,26,9.5}$:	140.6	1.56	28.1	44.4	44.4	-0.1	-2.0	2.0
$\mathrm{dL}_{\mathrm{t} 3,27,9.5}$:	142.2	1.56	29.0	42.2	45.3	-3.1	-2.0	-1.1
dL ${ }_{\text {t } 3,28,9.5}$	139.1	1.56	29.7	46.2	46.0	0.2	-2.0	2.2
dL $\mathrm{L}_{\mathrm{t}, 29,9,5}$	140.6	1.56	29.9	42.2	46.2	-4.0	-2.0	-2.0
$\mathrm{dL}_{\mathrm{t} 3,30,9.5}$:	139.1	1.56	28.6	43.3	44.9	-1.7	-2.0	0.3
dL ${ }_{\text {t }}^{\text {d,31,9.5: }}$	140.6	1.56	29.3	43.2	45.6	-2.4	-2.0	-0.4
dL ${ }_{\text {t3,32,9,5: }}$	137.5	1.56	29.1	39.4	45.4	-6.0	-2.0	-4.0
dLLi,33,9.5:	142.2	1.56	29.8	42.0	46.1	-4.1	-2.0	-2.1
dL $\mathrm{L}_{\mathrm{t}, 34,9.5}$	142.2	1.56	29.4	43.4	45.7	-2.3	-2.0	-0.3
$\mathrm{dL}_{\mathrm{t} 3,35,9.5}$:	140.6	1.56	28.5	42.5	44.8	-2.3	-2.0	-0.2
dL $\mathrm{L}_{\mathrm{t}, 36,9.5}$	140.6	1.56	29.1	41.1	45.4	-4.3	-2.0	-2.3
dL $\mathrm{L}_{\mathrm{t}, 37,9,5 \text { : }}$	140.6	1.56	29.2	39.8	45.5	-5.7	-2.0	-3.7
dL ${ }_{\text {t }}$,38,9,5:	139.1	1.56	29.4	38.7	45.7	-7.0	-2.0	-5.0
$\mathrm{dL}_{\mathrm{t} 3,39,9.5}$:	140.6	1.56	29.1	43.2	45.4	-2.2	-2.0	-0.2
dL ${ }_{\text {t } 3,40,9.5}$	140.6	1.56	28.2	41.1	44.5	-3.4	-2.0	-1.4
dL $\mathrm{L}_{\mathrm{t}, 41,9.5}$	142.2	1.56	28.4	41.7	44.7	-2.9	-2.0	-0.9
dL ${ }_{\text {t } 3,42,9.5}$	139.1	1.56	27.5	42.8	43.8	-1.0	-2.0	1.0
$\mathrm{dL}_{\mathrm{t}, 43,9.5}$:	140.6	1.56	29.1	43.5	45.4	-2.0	-2.0	0.0
dL $\mathrm{L}_{\mathrm{t}, 44,9,5}$	143.8	1.56	29.1	40.6	45.4	-4.8	-2.0	-2.8
dL ${ }_{\text {t } 3,45,9,5:}$	140.6	1.56	29.9	38.6	46.2	-7.6	-2.0	-5.6
dL ${ }_{\text {t3,46,9.5: }}$	140.6	1.56	28.6	42.7	44.9	-2.2	-2.0	-0.2
dL $\mathrm{L}_{\mathrm{t}, 47,9.5}$:	140.6	1.56	29.3	39.9	45.6	-5.7	-2.0	-3.7
$\mathrm{dL}_{\mathrm{t}, 48,9.5}$:	140.6	1.56	29.6	41.6	45.9	-4.3	-2.0	-2.3
dL $\mathrm{L}_{\mathrm{t}, 49,9.5}$	140.6	1.56	28.3	42.6	44.6	-2.1	-2.0	-0.1
dL $\mathrm{L}_{\mathrm{t}, 50,9.5}$	140.6	1.56	29.2	42.9	45.5	-2.6	-2.0	-0.6
dL ${ }_{\text {t } 3,51,9.5}$	134.4	1.56	28.0	42.3	44.3	-1.9	-2.0	0.1
dL ${ }_{\text {t } 3,52,9.5}$:	139.1	1.56	28.7	43.0	45.0	-2.0	-2.0	0.0
dL $\mathrm{L}_{\mathrm{t}, 53,9,5}$	140.6	1.56	29.0	41.6	45.3	-3.7	-2.0	-1.7
$\mathrm{dL}_{\mathrm{t} 3,54,9.5}$:	140.6	1.56	29.6	38.9	45.9	-7.0	-2.0	-5.0
dL $\mathrm{L}_{\mathrm{t}, 55,9.5}$	142.2	1.56	29.3	44.4	45.6	-1.2	-2.0	0.8
dL ${ }_{\text {t3,56,9.5: }}$	140.6	1.56	30.7	38.1	47.0	-8.8	-2.0	-6.8
dL ${ }_{\text {t3, } 57,9.5}$	140.6	1.56	29.5	42.5	45.8	-3.3	-2.0	-1.3
dL $\mathrm{L}_{\text {I }, 58,9,5 \text { : }}$	142.2	1.56	29.5	45.9	45.8	0.1	-2.0	2.1
dL ${ }_{\text {t3,59,9.5: }}$	142.2	1.56	29.9	38.3	46.2	-7.9	-2.0	-5.9
dL $\mathrm{L}_{\mathrm{t}, 60,9.5}$:	139.1	1.56	28.8	41.1	45.1	-4.0	-2.0	-2.0
dL ${ }_{\text {t3,61,9.5: }}$	142.2	1.56	28.5	38.1	44.8	-6.7	-2.0	-4.6
dLix,62,9.5:	142.2	1.56	28.9	42.7	45.2	-2.5	-2.0	-0.5
dL ${ }_{\text {t } 3,63,9.5}$	140.6	1.56	29.5	41.6	45.8	-4.2	-2.0	-2.1
dL $\mathrm{L}_{\mathrm{t}, 64,9.5}$:	142.2	1.56	28.0	41.6	44.3	-2.7	-2.0	-0.7
dL $\mathrm{L}_{\mathrm{t}, 65,9.5}$:	140.6	1.56	28.6	43.2	44.9	-1.7	-2.0	0.3
dL $\mathrm{L}_{\mathrm{t}, 66,9.5}$:	142.2	1.56	27.8	41.3	44.1	-2.8	-2.0	-0.8
dL $\mathrm{L}_{\mathrm{t}, 67,9.5}$	140.6	1.56	28.5	44.5	44.8	-0.2	-2.0	1.8
dL $\mathrm{L}_{\mathrm{t}, 68,9.5}$:	139.1	1.56	28.8	41.7	45.1	-3.5	-2.0	-1.4
dL $\mathrm{L}_{\mathrm{t}, 69,9.5}$	140.6	1.56	29.5	41.3	45.8	-4.5	-2.0	-2.5
dL $\mathrm{L}_{\mathrm{t}, 70,9.5}$	142.2	1.56	29.8	40.7	46.1	-5.4	-2.0	-3.4
dL ${ }_{\text {t3,72,9,5: }}$	139.1	1.56	29.2	42.4	45.5	-3.0	-2.0	-1.0
dL ${ }_{\text {t3,73,9,5: }}$	140.6	1.56	29.6	41.8	45.9	-4.2	-2.0	-2.1
dL ${ }_{\text {t3,74,9,5: }}$	142.2	1.56	29.1	41.3	45.4	-4.1	-2.0	-2.1

Windlectric Inc.
Page 72 of 112
Amherst Island Wind Project

dL ${ }_{\text {t3, } 75,9.5}$:	140.6	1.56	29.3	44.4	45.6	-1.3	-2.0	0.8
dL $\mathrm{L}_{\text {t }}$,76,9.5:	142.2	1.56	29.0	40.6	45.3	-4.7	-2.0	-2.6
dL ${ }_{\text {t3,77,9.5: }}$	139.1	1.56	29.7	42.2	46.0	-3.7	-2.0	-1.7
dL $\mathrm{L}_{\text {t }}$,78,9.5:	139.1	1.56	29.8	39.2	46.1	-6.9	-2.0	-4.9
dL ${ }_{\text {t3,79,9.5: }}$	140.6	1.56	29.5	39.3	45.8	-6.5	-2.0	-4.5
$\mathrm{dL}_{\mathrm{t} 3,80,9.5}$:	140.6	1.56	30.1	42.4	46.4	-4.0	-2.0	-2.0
dL $\mathrm{L}_{\mathrm{t}, 81,9.5}$:	142.2	1.56	30.3	40.0	46.6	-6.6	-2.0	-4.6
$\mathrm{dL}_{\mathrm{t} 3,82,9.5}$:	142.2	1.56	29.8	43.9	46.1	-2.2	-2.0	-0.1
dL $\mathrm{L}_{13,8,9,9.5}$	140.6	1.56	28.4	39.6	44.7	-5.1	-2.0	-3.1
dL $\mathrm{L}_{\mathrm{t}, 84,9.5}$:	140.6	1.56	29.0	39.5	45.3	-5.8	-2.0	-3.8
$\mathrm{dL}_{\mathrm{t} 3,85,9.5}$:	140.6	1.56	29.5	42.5	45.8	-3.3	-2.0	-1.3
dL $\mathrm{L}_{\mathrm{t}, 86,9.5}$:	140.6	1.56	28.7	41.9	45.0	-3.1	-2.0	-1.1
dL $\mathrm{L}_{\mathrm{t}, 87,9.5}$:	142.2	1.56	28.6	40.7	44.9	-4.2	-2.0	-2.1
dL $\mathrm{L}_{\text {t, }, 88,9.5}$	140.6	1.56	28.6	43.1	44.9	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t}, 8,9,9.5}$	140.6	1.56	28.3	41.1	44.6	-3.5	-2.0	-1.5
dL t4, $71,9.5^{\text {a }}$	175.0	1.56	28.1	42.2	44.4	-2.2	-2.0	-0.2
dL ${ }_{\text {t5,2,9,9.5: }}$	232.8	1.56	28.2	34.3	44.7	-10.3	-2.1	-8.3
dL ${ }_{\text {t5,2,9,.5: }}$	232.8	1.56	29.4	36.2	45.8	-9.6	-2.1	-7.6
dLt5, 25,9.5:	232.8	1.56	27.9	35.5	44.3	-8.8	-2.1	-6.8
dL ${ }_{\text {t5,2,9,9.5: }}$	232.8	1.56	28.7	35.6	45.2	-9.6	-2.1	-7.5
dLt5,30,9.5:	232.8	1.56	28.3	34.8	44.7	-9.9	-2.1	-7.8
dL t5,31,9.5: $^{\text {a }}$	232.8	1.56	29.0	35.9	45.5	-9.5	-2.1	-7.5
dL ${ }_{\text {5 } 5,32,9.5}$:	232.8	1.56	27.8	35.4	44.2	-8.9	-2.1	-6.8
dL ${ }_{\text {t5,3, }, 9.5}$:	232.8	1.56	28.7	36.0	45.1	-9.1	-2.1	-7.1
dL ${ }_{\text {t5, } 36,9.5}$:	232.8	1.56	29.1	35.3	45.5	-10.2	-2.1	-8.1
dL t5, 37,9.5: $^{\text {a }}$	232.8	1.56	28.6	35.7	45.1	-9.4	-2.1	-7.4
dL ${ }_{\text {t } 5,71,9.5}$	232.8	1.56	27.9	35.2	44.4	-9.2	-2.1	-7.1
dL ${ }_{\text {t, }, 82,9,5}$	232.8	1.56	29.8	36.6	46.2	-9.7	-2.1	-7.6
dL t6,27,9.5: $^{\text {a }}$	309.4	1.56	27.5	35.2	44.1	-8.9	-2.1	-6.8
dL t6,61,9.5: $^{\text {e }}$	325.0	1.56	27.5	37.4	44.1	-6.6	-2.1	-4.5
dL t6,64,9.5: $^{\text {a }}$	325.0	1.56	28.2	34.5	44.8	-10.2	-2.1	-8.1
dL t6, $73,9.5^{\text {a }}$	325.0	1.56	27.8	33.9	44.3	-10.5	-2.1	-8.3
$\mathrm{dL}_{\text {t6,75,9.5: }}$	325.0	1.56	28.7	38.0	45.2	-7.2	-2.1	-5.1
$\mathrm{dL}_{\text {t6,79,9.5: }}$	325.0	1.56	29.2	35.7	45.7	-10.0	-2.1	-7.9
dL ${ }_{\text {t7,9,9,5: }}$	8039.6	1.56	-16.4	-9.8	12.9	-22.7	-5.0	-17.7
d $\mathrm{L}_{\text {t7,11,9.5: }}$	8034.9	1.56	-16.4	-10.0	12.9	-22.9	-5.0	-17.9
dL $\mathrm{L}_{\mathrm{t}, 12,9,5}$	8020.8	1.56	-15.7	-9.4	13.5	-22.9	-5.0	-17.9
d $\mathrm{L}_{\mathrm{t}, 21,9,5}$	8030.2	1.56	-16.3	-10.0	13.0	-23.0	-5.0	-18.0
dLt7, 26,9.5:	7994.2	1.56	-16.6	-9.2	12.7	-21.8	-5.0	-16.8
dL $\mathrm{Lt}_{\text {t, } 27,9,5:}$	8066.1	1.56	-17.3	-11.3	12.0	-23.3	-5.0	-18.3
dL $\mathrm{Lt}_{\text {7, } 61,9.5}$:	7947.4	1.56	-17.6	-11.3	11.6	-23.0	-5.0	-18.0
dL ${ }_{\text {t7,86,9.5: }}$	8052.1	1.56	-17.2	-11.0	12.1	-23.2	-5.0	-18.2

2

Windlectric Inc.
Page 73 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

BIN 9.5: Tonal components determined - Compact

Spectrum	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\mathrm{tn}, \mathrm{j}, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tr, j, }}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tr, j, } \mathrm{k}}$
\#\#	[Hz]	[dB]										
1	70.3	-2.8	---	---	142.2	-1.9	---	---	---	---	---	---
2	70.3	-3.6	---	---	142.2	-0.1	---	---	---	---	---	---
3	70.3	-0.8	---	---	142.2	1.4	---	---	---	---	---	---
4	70.3	-0.9	---	---	140.6	0.2	---	---	---	---	---	---
5	73.4	1.4	---	---	142.2	2.0	---	---	---	---	---	---
6	70.3	-2.8	---	---	140.6	0.0	---	---	---	---	---	---
7	68.8	-5.2	---	---	140.6	-0.5	---	---	---	---	---	---
8	70.3	1.3	---	---	142.2	1.7	---	---	---	---	---	---
9	70.3	1.2	---	---	140.6	1.4	---	---	---	---	---	---
10	70.3	-0.8	---	---	140.6	0.8	---	---	---	---	---	---
11	70.3	0.1	---	---	140.6	1.5	---	---	---	---	---	---
12	70.3	0.6	---	---	142.2	1.5	---	---	---	---	---	---
13	70.3	-4.1	---	---	140.6	-6.7	---	---	---	---	---	---
14	71.9	-2.8	---	---	140.6	-1.8	---	---	---	---	---	---
15	70.3	0.1	---	---	140.6	-0.3	---	---	---	---	---	---
16	70.3	-1.1	---	---	140.6	-0.4	---	---	---	---	---	---
17	70.3	0.7	---	---	140.6	-0.8	---	---	---	---	---	---
18	70.3	0.2	---	---	140.6	-3.0	---	---	---	---	---	---
19	70.3	-2.8	---	---	140.6	-1.3	---	---	---	---	---	---
20	67.2	-8.0	---	---	139.1	-2.8	---	---	232.8	-10.3	---	---
21	68.8	-6.6	---	---	---	---	---	---	---	---	---	---
22	68.8	-9.6	---	---	139.1	0.2	---	---	232.8	-9.6	---	---
23	---	---	93.8	4.2	142.2	3.9	---	---	---	---	---	---
24	70.3	-0.2	---	---	142.2	-6.1	---	---	---	---	---	---
25	70.3	-0.2	---	---	140.6	-1.4	---	---	232.8	-8.8	---	---
26	70.3	-0.1	---	---	140.6	-0.1	---	---	---	---	---	---
27	70.3	-3.4	---	---	142.2	-3.1	---	---	---	---	309.4	-8.9
28	---	---	---	---	139.1	0.2	---	---	---	---	---	---
29	70.3	-4.5	---	---	140.6	-4.0	---	---	232.8	-9.6	---	---
30	82.8	-3.1	82.8	-3.1	139.1	-1.7	---	---	232.8	-9.9	---	---
31	70.3	-3.0	---	---	140.6	-2.4	---	---	232.8	-9.5	---	---
32	68.8	-7.6	---	---	137.5	-6.0	---	---	232.8	-8.9	---	---
33	70.3	-1.6	---	---	142.2	-4.1	---	---	---	---	---	---
34	73.4	-1.1	---	---	142.2	-2.3	---	---	---	---	---	---
35	71.9	-2.0	---	---	140.6	-2.3	---	---	232.8	-9.1	---	---
36	71.9	-1.7	---	---	140.6	-4.3	---	---	232.8	-10.2	---	---
37	71.9	-2.9	---	---	140.6	-5.7	---	---	232.8	-9.4	---	---
38	---	---	---	---	139.1	-7.0	---	---	---	---	---	---
39	71.9	-3.6	---	---	140.6	-2.2	---	---	---	---	---	---
40	71.9	0.0	---	---	140.6	-3.4	---	---	---	---	---	---
41	71.9	-0.5	---	---	142.2	-2.9	---	---	---	---	---	---
42	71.9	-3.2	---	---	139.1	-1.0	---	---	---	---	---	---
43	70.3	-3.2	---	---	140.6	-2.0	---	---	---	---	---	---
44	70.3	-2.2	---	---	143.8	-4.8	---	---	---	---	---	---
45	70.3	-7.7	---	---	140.6	-7.6	---	---	---	---	---	---
46	70.3	-3.5	---	---	140.6	-2.2	---	---	---	---	---	---
47	68.8	-5.2	---	---	140.6	-5.7	---	---	---	---	---	---
48	70.3	-4.4	---	---	140.6	-4.3	---	---	---	---	---	---
49	70.3	-2.7	---	---	140.6	-2.1	---	---	---	---	---	---
50	68.8	-3.5	---	---	140.6	-2.6	---	---	---	---	---	---
51	67.2	-10.2	---	---	134.4	-1.9	---	---	---	---	---	---

NOISE

Windlectric Inc.

52	68.8	-6.9	---	---	139.1	-2.0	---	---	---	---	---	---
53	70.3	-3.9	---	---	140.6	-3.7	---	---	---	---	---	---
54	71.9	-3.4	---	---	140.6	-7.0	---	---	---	---	---	---
55	70.3	-1.7	---	---	142.2	-1.2	---	---	---	---	---	---
56	70.3	-3.6	---	---	140.6	-8.8	---	---	---	---	---	---
57	71.9	-1.7	---	---	140.6	-3.3	---	---	---	---	---	---
58	73.4	-1.4	---	---	142.2	0.1	---	---	---	---	---	---
59	71.9	-2.8	---	---	142.2	-7.9	---	---	---	---	---	---
60	71.9	-6.1	---	---	139.1	-4.0	---	---	---	---	---	---
61	73.4	-1.6	---	---	142.2	-6.7	---	---	---	---	325.0	-6.6
62	70.3	-0.6	---	---	142.2	-2.5	---	---	---	---	---	---
63	70.3	-5.5	---	---	140.6	-4.2	---	---	---	---	---	---
64	70.3	-0.5	---	---	142.2	-2.7	---	---	---	---	325.0	-10.2
65	70.3	-4.4	---	---	140.6	-1.7	---	---	---	---	---	---
66	73.4	-0.3	---	---	142.2	-2.8	---	---	---	---	---	---
67	68.8	-0.6	---	---	140.6	-0.2	---	---	---	---	---	---
68	68.8	-7.4	---	---	139.1	-3.5	---	---	---	---	---	---
69	71.9	-2.6	---	---	140.6	-4.5	---	---	---	---	---	---
70	71.9	-4.0	---	---	142.2	-5.4	---	---	---	---	---	---
71	68.8	-5.6	---	---	---	---	175.0	-2.2	232.8	-9.2	---	---
72	68.8	-8.7	---	---	139.1	-3.0	---	---	---	---	---	---
73	71.9	-4.4	---	---	140.6	-4.2	---	---	---	---	325.0	-10.5
74	73.4	-4.3	---	---	142.2	-4.1	---	---	---	---	---	---
75	71.9	-3.2	---	---	140.6	-1.3	---	---	---	---	325.0	-7.2
76	70.3	-3.2	---	---	142.2	-4.7	---	---	---	---	---	---
77	68.8	-7.2	---	---	139.1	-3.7	---	---	---	---	---	---
78	---	---	---	---	139.1	-6.9	---	---	---	---	---	---
79	70.3	-2.4	---	---	140.6	-6.5	---	---	---	---	325.0	-10.0
80	70.3	-7.0	---	---	140.6	-4.0	---	---	---	---	---	---
81	70.3	-3.9	---	---	142.2	-6.6	---	---	---	---	---	---
82	71.9	-4.2	---	---	142.2	-2.2	---	---	232.8	-9.7	---	---
83	70.3	-7.3	---	---	140.6	-5.1	---	---	---	---	---	---
84	70.3	-3.3	---	---	140.6	-5.8	---	---	---	---	---	---
85	70.3	-7.9	---	---	140.6	-3.3	---	---	---	---	---	---
86	70.3	-3.5	---	---	140.6	-3.1	---	---	---	---	---	---
87	70.3	-1.9	---	---	142.2	-4.2	---	---	---	---	---	---
88	70.3	-2.7	---	---	140.6	-1.8	---	---	---	---	---	---
89	70.3	-2.3	---	---	140.6	-3.5	---	---	---	---	---	---
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL} \mathrm{L}_{\mathrm{k}}[\mathrm{dB}]$	70.7	-2.7	93.6	-12.4	140.8	-2.1	175.0	-15.3	232.8	-14.6	310.3	-15.3
La_{a} [dB]		-2.0		-2.0		-2.0		-2.0		-2.1		-2.1
dL ${ }_{\text {a, }}$ [dB]		-0.7		-10.4		-0.1		-13.3		-12.5		-13.2
$\mathrm{K}_{\text {tn }}$ [dB]		0		0		0		0		0		0

BIN 9.5: Narrowband spectrum

Windlectric Inc.

Windlectric Inc.
Page 77 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

BIN 10: Tonal components determined

	Frequency	delta f	$\mathrm{L}_{\text {pn,avg, }, \mathrm{j} \text {, }}$	$\mathrm{Lppt,j}, \mathrm{k}^{\text {l }}$	Lpn,j,k	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{L}_{\text {a }}$	$\mathrm{dL}_{\mathrm{a}, \mathrm{j}, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
$\mathrm{dL}_{\mathrm{t} 1,1,10}$:	70.3	1.56	24.6	39.1	41.0	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 1,2,10}$:	70.3	1.56	26.1	39.7	42.4	-2.7	-2.0	-0.7
dLti1,3,10:	70.3	1.56	23.3	39.9	39.6	0.3	-2.0	2.3
dLti1,4,10:	70.3	1.56	23.9	40.4	40.2	0.2	-2.0	2.2
$\mathrm{dL}_{\mathrm{t} 1,5,10}$:	70.3	1.56	24.3	38.7	40.6	-1.9	-2.0	0.1
dL ${ }_{\text {t1, } 6,10}$:	82.8	1.56	25.4	41.7	41.7	0.0	-2.0	2.0
dL ${ }_{\text {t1, 7, } 10}$:	71.9	1.56	24.1	35.7	40.4	-4.7	-2.0	-2.7
$\mathrm{dL}_{\mathrm{t} 1,8,10}$:	68.8	1.56	26.5	36.4	42.8	-6.3	-2.0	-4.3
dLti1,9,10:	68.8	1.56	25.5	31.9	41.7	-9.9	-2.0	-7.9
dL ${ }_{\text {t1,10,10 }}$:	70.3	1.56	25.1	39.0	41.4	-2.4	-2.0	-0.4
dLta,11,10:	73.4	1.56	27.0	33.6	43.3	-9.8	-2.0	-7.8
dL ${ }_{\text {ti,12,10 }}$:	68.8	1.56	24.4	35.2	40.6	-5.4	-2.0	-3.4
$\mathrm{dL}_{\mathrm{t} 1,13,10}$:	70.3	1.56	25.5	39.6	41.8	-2.2	-2.0	-0.2
$\mathrm{dL}_{\mathrm{t} 1,14,10}$:	71.9	1.56	26.1	39.3	42.4	-3.1	-2.0	-1.1
$\mathrm{dL}_{\mathrm{t} 1,15,10}$:	70.3	1.56	26.7	34.1	43.0	-8.8	-2.0	-6.8
dLta,16,10:	68.8	1.56	26.4	38.5	42.6	-4.1	-2.0	-2.1
$\mathrm{dL}_{\mathrm{t} 1,17,10}$:	70.3	1.56	23.5	39.3	39.8	-0.4	-2.0	1.6
$\mathrm{dL}_{\mathrm{t} 1,18,10}$:	70.3	1.56	26.5	38.5	42.8	-4.3	-2.0	-2.3
dLtit,19,10:	70.3	1.56	26.1	39.6	42.4	-2.8	-2.0	-0.7
dL ${ }_{\text {t1,20,10 }}$:	68.8	1.56	24.6	32.6	40.8	-8.2	-2.0	-6.2
dLti1,21,10:	70.3	1.56	25.0	39.1	41.4	-2.3	-2.0	-0.3
$\mathrm{dL}_{\mathrm{t} 1,23,10}$:	70.3	1.56	23.9	39.5	40.2	-0.7	-2.0	1.3
dL ${ }_{\text {t1,24,10 }}$:	70.3	1.56	23.2	39.0	39.5	-0.5	-2.0	1.5
dL ${ }_{\text {ti, 25,10 }}$:	71.9	1.56	24.8	39.9	41.1	-1.2	-2.0	0.8
$\mathrm{dL}_{\mathrm{t} 1,26,10}$:	73.4	1.56	24.8	37.7	41.1	-3.4	-2.0	-1.4
dLti,27,10:	70.3	1.56	22.3	39.3	38.6	0.7	-2.0	2.7
dL ${ }_{\text {ti, } 28,10}$:	70.3	1.56	24.1	38.5	40.4	-1.9	-2.0	0.1
dL ${ }_{\text {ti } 2,29,10}$	68.8	1.56	24.4	36.4	40.7	-4.3	-2.0	-2.3
$\mathrm{dL}_{\mathrm{t} 1,30,10}$:	70.3	1.56	26.3	34.5	42.6	-8.1	-2.0	-6.1
$\mathrm{dL}_{\mathrm{t} 1,31,10}$:	71.9	1.56	27.6	33.8	43.9	-10.1	-2.0	-8.1
$\mathrm{dL}_{\mathrm{t} 1,32,10}$:	71.9	1.56	24.2	37.8	40.5	-2.7	-2.0	-0.7
$\mathrm{dL}_{\mathrm{t} 1,34,10}$:	68.8	1.56	24.8	35.4	41.1	-5.7	-2.0	-3.7
dLt ${ }_{\text {t1,35,10 }}$:	68.8	1.56	24.4	39.6	40.6	-1.0	-2.0	1.0
$\mathrm{dL}_{\mathrm{t} 1,37,10}$:	70.3	1.56	24.7	36.4	41.0	-4.5	-2.0	-2.5
$\mathrm{dL}_{\mathrm{t} 1,38,10}$:	70.3	1.56	25.9	36.5	42.2	-5.7	-2.0	-3.7
$\mathrm{dL}_{\mathrm{t} 1,39,10}$:	68.8	1.56	25.3	35.6	41.5	-5.9	-2.0	-3.9
$\mathrm{dL}_{\mathrm{t}_{1,40,10}}$	68.8	1.56	27.7	34.7	43.9	-9.2	-2.0	-7.2
dLti1,41,10:	71.9	1.56	24.0	37.4	40.3	-2.9	-2.0	-0.9
$\mathrm{dL}_{\mathrm{t} 1,42,10}$:	73.4	1.56	26.5	40.0	42.8	-2.8	-2.0	-0.8
$\mathrm{dL}_{\mathrm{t} 1,43,10}$:	70.3	1.56	25.1	39.1	41.4	-2.2	-2.0	-0.2
dL ${ }_{\text {ti,44, } 10}$:	70.3	1.56	25.2	34.1	41.5	-7.4	-2.0	-5.4
$\mathrm{dL}_{\mathrm{t} 1,45,10}$:	70.3	1.56	24.7	39.9	41.0	-1.0	-2.0	1.0
dLti1,46,10:	70.3	1.56	25.7	35.0	42.0	-7.1	-2.0	-5.1
$\mathrm{dL}_{\mathrm{t} 1,47,10}$:	70.3	1.56	25.2	37.4	41.5	-4.1	-2.0	-2.1
dL ${ }_{\text {t1,48,10 }}$	70.3	1.56	26.3	35.1	42.6	-7.5	-2.0	-5.5
$\mathrm{dL}_{\mathrm{t}_{1,49,10}}$:	70.3	1.56	24.7	38.5	41.0	-2.5	-2.0	-0.5
$\mathrm{dL}_{\mathrm{t} 1,50,10}$:	70.3	1.56	23.7	38.2	40.0	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 2,6,10}$:	82.8	1.56	25.4	41.7	41.7	0.0	-2.0	2.0
$\mathrm{dL}_{\mathrm{t}_{2,33,10}}$	100.0	1.56	27.6	44.2	43.9	0.3	-2.0	2.3
dL ${ }_{\text {t } 2,36,10}$:	104.7	1.56	25.3	39.8	41.6	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 3,1,10}$:	140.6	1.56	27.9	41.1	44.2	-3.2	-2.0	-1.1

Windlectric Inc.
Page 78 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 3,2,10}$:	142.2	1.56	28.5	41.5	44.8	-3.3	-2.0	-1.3
dL $\mathrm{L}_{\mathbf{3}, 3,10}$:	140.6	1.56	27.5	41.6	43.8	-2.2	-2.0	-0.2
$\mathrm{dL}_{\mathrm{t} 3,4,10}$:	140.6	1.56	28.5	44.1	44.8	-0.6	-2.0	1.4
dLt ${ }_{\text {3,5,10 }}$:	140.6	1.56	28.0	41.6	44.3	-2.7	-2.0	-0.7
dL $\mathrm{L}_{\mathrm{t}, 6,10}$:	140.6	1.56	28.5	39.8	44.8	-5.0	-2.0	-3.0
$\mathrm{dL}_{\mathrm{t} 3,7,10}$:	140.6	1.56	27.6	38.0	43.9	-5.9	-2.0	-3.9
$\mathrm{dL}_{\mathrm{t} 3,8,10}$:	139.1	1.56	29.3	39.5	45.6	-6.1	-2.0	-4.1
dL $\mathrm{d}_{\mathrm{t}, 10,10}$:	140.6	1.56	29.1	43.2	45.4	-2.1	-2.0	-0.1
dL ${ }_{\text {t } 3,11,10}$:	139.1	1.56	29.9	42.2	46.2	-4.0	-2.0	-2.0
$\mathrm{dL}_{\mathrm{t}, 13,10}$:	140.6	1.56	28.3	43.1	44.6	-1.4	-2.0	0.6
dL $\mathrm{d}_{\mathrm{t}, 14,10}$:	142.2	1.56	28.8	42.6	45.1	-2.5	-2.0	-0.4
$\mathrm{dL}_{\mathrm{t}, 15,10}$:	140.6	1.56	29.6	37.5	45.9	-8.4	-2.0	-6.4
$\mathrm{dL}_{\mathrm{t}, 16,10}$:	140.6	1.56	29.8	39.7	46.1	-6.4	-2.0	-4.4
dL $\mathrm{L}_{\mathrm{t}, 17,10}$:	140.6	1.56	28.1	42.6	44.4	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 3,18,10}$:	142.2	1.56	29.6	38.0	45.9	-7.9	-2.0	-5.9
dL $\mathrm{d}_{\mathrm{t}, 19,10}$:	142.2	1.56	29.2	48.0	45.5	2.4	-2.0	4.5
$\mathrm{dL}_{\mathrm{t}, 20,10}$:	137.5	1.56	28.3	41.8	44.6	-2.8	-2.0	-0.8
dL $\mathrm{d}_{\mathrm{t}, 21,10}$:	140.6	1.56	28.7	42.7	45.0	-2.3	-2.0	-0.3
dL $\mathrm{L}_{\mathrm{t}, 22,10}$	139.1	1.56	29.3	41.8	45.6	-3.9	-2.0	-1.8
$\mathrm{dL}_{\mathrm{t} 3,23,10}$:	142.2	1.56	28.7	42.4	45.0	-2.6	-2.0	-0.6
dL $\mathrm{L}_{\mathrm{t}, 24,10}$:	140.6	1.56	28.4	39.6	44.7	-5.1	-2.0	-3.1
$\mathrm{dL}_{\mathrm{t} 3,25,10}$:	142.2	1.56	29.0	43.6	45.3	-1.6	-2.0	0.4
$\mathrm{dL}_{\mathrm{t} 3,26,10}$:	140.6	1.56	28.2	42.3	44.5	-2.2	-2.0	-0.2
$\mathrm{dL}_{\mathrm{t}, 27,10}$:	140.6	1.56	26.8	44.1	43.1	1.0	-2.0	3.0
dL ${ }_{\text {t3,28,10 }}$:	140.6	1.56	28.0	44.4	44.3	0.1	-2.0	2.1
dL $\mathrm{d}_{\mathrm{t}, 29,10}$:	140.6	1.56	28.4	40.8	44.7	-3.9	-2.0	-1.9
dL ${ }_{\text {t3,31,10 }}$:	140.6	1.56	30.3	36.9	46.6	-9.7	-2.0	-7.6
dL ${ }_{\text {t3,34,10 }}$:	137.5	1.56	28.3	42.2	44.6	-2.4	-2.0	-0.4
dL ${ }_{\text {t3,36,10 }}$:	140.6	1.56	29.5	38.2	45.8	-7.7	-2.0	-5.6
$\mathrm{dL}_{\mathrm{t}, 37,10}$:	139.1	1.56	28.4	44.3	44.7	-0.3	-2.0	1.7
dL $\mathrm{L}_{\mathrm{t}, 38,10}$	140.6	1.56	28.7	42.1	45.0	-2.9	-2.0	-0.9
dL $\mathrm{L}_{\mathrm{t}, 39,10}$	137.5	1.56	29.3	41.7	45.6	-3.8	-2.0	-1.8
$\mathrm{dL}_{\mathrm{t} 3,41,10}$:	140.6	1.56	28.7	43.2	45.0	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t}, 42,10}$:	142.2	1.56	30.4	44.0	46.8	-2.7	-2.0	-0.7
dL $\mathrm{d}_{\mathrm{t}, 43,10}$:	142.2	1.56	28.5	41.8	44.8	-3.0	-2.0	-1.0
dL $\mathrm{L}_{\mathrm{t}, 44,10}$:	140.6	1.56	29.0	37.4	45.3	-7.9	-2.0	-5.9
$\mathrm{dL}_{\mathrm{t} 3,45,10}$:	142.2	1.56	28.6	43.1	44.9	-1.8	-2.0	0.3
dL ${ }_{\text {t }}$ d 47,10 :	140.6	1.56	28.6	38.7	44.9	-6.2	-2.0	-4.2
dL ${ }_{\text {t }}$, 48,10:	140.6	1.56	29.6	41.1	45.9	-4.8	-2.0	-2.8
$\mathrm{dL}_{\mathrm{i} 3,49,10}$:	142.2	1.56	28.2	41.3	44.5	-3.1	-2.0	-1.1
$\mathrm{dL}_{\mathrm{t} 3,50,10}$:	140.6	1.56	27.9	36.7	44.2	-7.5	-2.0	-5.5
dL ${ }_{\text {t } 4,9,10}$:	175.0	1.56	27.5	39.8	43.8	-3.9	-2.0	-1.9
dLt4,12,10:	175.0	1.56	28.1	41.2	44.4	-3.1	-2.0	-1.1
dL ${ }_{4}$, 30,10:	175.0	1.56	29.3	41.8	45.6	-3.9	-2.0	-1.9
$\mathrm{dL}_{44,32,10}$:	175.0	1.56	28.1	43.2	44.4	-1.2	-2.0	0.9
$\mathrm{dL}_{\mathrm{t} 4,33,10}$:	175.0	1.56	28.3	40.6	44.7	-4.1	-2.0	-2.1
$\mathrm{dL}_{\mathrm{t} 4,35,10}$:	175.0	1.56	28.2	39.4	44.5	-5.1	-2.0	-3.0
dLt4,40,10:	175.0	1.56	30.4	37.1	46.7	-9.6	-2.0	-7.6
$\mathrm{dL}_{\text {t5,5,10: }}$	232.8	1.56	28.6	35.5	45.0	-9.5	-2.1	-7.5
$\mathrm{dL}_{\text {t5,9,10 }}$:	232.8	1.56	27.7	34.0	44.1	-10.2	-2.1	-8.1
dL ${ }_{\text {t5,13,10 }}$	232.8	1.56	28.6	35.4	45.0	-9.6	-2.1	-7.6
$\mathrm{dL}_{\text {t5,24,10 }}$:	232.8	1.56	29.1	35.5	45.5	-10.0	-2.1	-7.9
dL ${ }_{\text {t5,27,10: }}$	232.8	1.56	28.3	34.4	44.7	-10.3	-2.1	-8.2
dL ${ }_{\text {t5,30,10 }}$:	232.8	1.56	28.7	35.8	45.2	-9.4	-2.1	-7.3

Windlectric Inc.

dL ${ }_{\text {t5,32,10 }}$:	232.8	1.56	28.0	34.5	44.5	-9.9	-2.1	-7.9
dL ${ }_{\text {t5,33,10: }}$	232.8	1.56	28.3	35.0	44.8	-9.7	-2.1	-7.7
$\mathrm{dL}_{\text {t5,41,10: }}$	232.8	1.56	28.6	36.6	45.0	-8.4	-2.1	-6.4
dLt5,42,10:	232.8	1.56	30.2	36.5	46.7	-10.2	-2.1	-8.2
dL ${ }_{\text {t6,5,10 }}$:	309.4	1.56	28.0	35.8	44.5	-8.7	-2.1	-6.6
$\mathrm{dL}_{16,7,10}$:	307.8	1.56	27.2	37.2	43.7	-6.6	-2.1	-4.5
dL $\mathrm{t}_{6,32,10}$:	325.0	1.56	26.5	35.2	43.1	-7.9	-2.1	-5.8
dL $\mathrm{t}_{6,44,10}$:	325.0	1.56	28.9	39.6	45.5	-5.9	-2.1	-3.8
dLtt, ${ }^{\text {d }}$ /10:	7986.4	1.56	-17.2	-11.2	12.1	-23.2	-5.0	-18.2
dL ${ }_{\text {t7,43,10 }}$	7944.2	1.56	-16.9	-10.8	12.4	-23.2	-5.0	-18.2
dL $\mathrm{t}_{7,45,10}$:	8000.5	1.56	-16.6	-10.5	12.7	-23.1	-5.0	-18.1

BIN 10: Tonal components determined - Compact

Spectrum	f_{T}	dLtn,j,k	f_{T}	dLtn,j,k	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	f_{T}	dL ${ }_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	f_{T}	dL ${ }_{\text {tn, }, \mathrm{k}}$	f_{T}	dL ${ }_{\text {tn, }, \mathrm{j}, \mathrm{k}}$
\#\#	[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]	[Hz]	[dB]
1	70.3	-1.8	---	---	140.6	-3.2	---	---	---	---	---	---
2	70.3	-2.7	---	---	142.2	-3.3	---	---	---	---	---	---
3	70.3	0.3	---	---	140.6	-2.2	---	---	---	---	---	---
4	70.3	0.2	---	---	140.6	-0.6	---	---	---	---	---	---
5	70.3	-1.9	---	---	140.6	-2.7	---	---	232.8	-9.5	309.4	-8.7
6	82.8	0.0	82.8	0.0	140.6	-5.0	---	---	---	---	---	---
7	71.9	-4.7	---	---	140.6	-5.9	---	---	---	---	307.8	-6.6
8	68.8	-6.3	---	---	139.1	-6.1	---	---	---	---	---	---
9	68.8	-9.9	---	---	---	---	175.0	-3.9	232.8	-10.2	---	---
10	70.3	-2.4	---	---	140.6	-2.1	---	---	---	---	---	---
11	73.4	-9.8	---	---	139.1	-4.0	---	---	---	---	---	---
12	68.8	-5.4	---	---	---	---	175.0	-3.1	---	---	---	---
13	70.3	-2.2	---	---	140.6	-1.4	---	---	232.8	-9.6	---	---
14	71.9	-3.1	---	---	142.2	-2.5	---	---	---	---	---	---
15	70.3	-8.8	---	---	140.6	-8.4	---	---	---	---	---	---
16	68.8	-4.1	---	---	140.6	-6.4	---	---	---	---	---	---
17	70.3	-0.4	---	---	140.6	-1.8	---	---	---	---	---	---
18	70.3	-4.3	---	---	142.2	-7.9	---	---	---	---	---	---
19	70.3	-2.8	---	---	142.2	2.4	---	---	---	---	---	---
20	68.8	-8.2	---	---	137.5	-2.8	---	---	---	---	---	---
21	70.3	-2.3	---	---	140.6	-2.3	---	---	---	---	---	---
22	---	---	---	---	139.1	-3.9	---	---	---	---	---	---
23	70.3	-0.7	---	---	142.2	-2.6	---	---	---	---	---	---
24	70.3	-0.5	---	---	140.6	-5.1	---	---	232.8	-10.0	---	---
25	71.9	-1.2	---	---	142.2	-1.6	---	---	---	---	---	---
26	73.4	-3.4	---	---	140.6	-2.2	---	---	---	---	---	---
27	70.3	0.7	---	---	140.6	1.0	---	---	232.8	-10.3	---	---
28	70.3	-1.9	---	---	140.6	0.1	---	---	---	---	---	---
29	68.8	-4.3	---	---	140.6	-3.9	---	---	---	---	---	---
30	70.3	-8.1	---	---	---	---	175.0	-3.9	232.8	-9.4	---	---
31	71.9	-10.1	---	---	140.6	-9.7	---	---	---	---	---	---
32	71.9	-2.7	---	---	---	---	175.0	-1.2	232.8	-9.9	325.0	-7.9
33	---	---	100.0	0.3	---	---	175.0	-4.1	232.8	-9.7	---	---
34	68.8	-5.7	---	---	137.5	-2.4	---	---	---	---	---	---
35	68.8	-1.0	---	---	---	---	175.0	-5.1	---	---	---	---
36	---	---	104.7	-1.8	140.6	-7.7	---	---	---	---	---	---
37	70.3	-4.5	---	---	139.1	-0.3	---	---	---	---	---	---
38	70.3	-5.7	---	---	140.6	-2.9	---	---	---	---	---	---
39	68.8	-5.9	---	---	137.5	-3.8	---	---	---	---	---	---

NOISE

40	68.8	-9.2	---	---	---	---	175.0	-9.6	---	---	---	---
41	71.9	-2.9	---	---	140.6	-1.8	---	---	232.8	-8.4	---	---
42	73.4	-2.8	---	---	142.2	-2.7	---	---	232.8	-10.2	---	---
43	70.3	-2.2	---	---	142.2	-3.0	---	---	---	---	---	---
44	70.3	-7.4	---	---	140.6	-7.9	---	---	---	---	325.0	-5.9
45	70.3	-1.0	---	---	142.2	-1.8	---	---	---	---	---	---
46	70.3	-7.1	---	---	---	---	---	---	---	---	---	---
47	70.3	-4.1	---	---	140.6	-6.2	---	---	---	---	---	---
48	70.3	-7.5	---	---	140.6	-4.8	---	---	---	---	---	---
49	70.3	-2.5	---	---	142.2	-3.1	---	---	---	---	---	---
50	70.3	-1.8	---	---	140.6	-7.5	---	---	---	---	---	---
$\mathrm{ft}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL}_{\mathrm{k}}[\mathrm{dB}]$	70.6	-3.3	99.8	-11.2	140.6	-3.6	175.0	-11.1	232.8	-14.0	310.0	-14.5
La[dB]		-2.0		-2.0		-2.0		-2.0		-2.1		-2.1
dLa,k[dB]		-1.3		-9.2		-1.5		-9.1		-12.0		-12.4
$\mathrm{K}_{\text {tN }}[\mathrm{dB}$]		0		0		0		0		0		0

BIN 10: Narrowband spectrum

BIN 10: Narrowband spectrum

Windlectric Inc.
Amherst Island Wind Project
Acoustic Test Report, WTG S29

BIN 10.5: Tonal components determined								
	Frequency	delta f	$\mathrm{L}_{\text {pn,avg,j,k }}$	$\mathrm{L}_{\mathrm{pt}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{prn}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\mathrm{aj,j}, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dL ${ }_{\text {t1,1,10.5: }}$	70.3	1.56	24.1	38.1	40.4	-2.3	-2.0	-0.3
dL $\mathrm{Lt} 1,2,10.5$	70.3	1.56	25.3	37.3	41.6	-4.4	-2.0	-2.3
$\mathrm{dL}_{\mathrm{t} 1,3,10,5}$:	75.0	1.56	24.8	39.6	41.2	-1.5	-2.0	0.5
$\mathrm{dL}_{\mathrm{t} 1,4,10.5}$:	68.8	1.56	23.6	37.8	39.9	-2.1	-2.0	-0.1
$\mathrm{dL}_{\mathrm{t} 1,5,10.5}$:	68.8	1.56	23.8	34.1	40.0	-5.9	-2.0	-3.9
dL $\mathrm{Lt} 1,6,10.5$	68.8	1.56	24.6	33.5	40.8	-7.3	-2.0	-5.3
$\mathrm{dL}_{\mathrm{t} 1,7,10.5}$:	68.8	1.56	24.9	37.6	41.1	-3.6	-2.0	-1.6
$\mathrm{dL}_{\mathrm{t} 1,8,10.5}$:	70.3	1.56	24.0	34.8	40.3	-5.5	-2.0	-3.5
$\mathrm{dL}_{\mathrm{t} 1,9,10.5}$:	82.8	1.56	24.3	39.2	40.5	-1.2	-2.0	0.8
$\mathrm{dL}_{\text {t1, 10,10.5: }}$	82.8	1.56	26.7	34.0	43.0	-9.0	-2.0	-7.0
dLti,11,10.5:	82.8	1.56	23.6	35.4	40.0	-4.6	-2.0	-2.5
$\mathrm{dL}_{\mathrm{t}_{1,12,10.5}}$	68.8	1.56	25.1	33.2	41.3	-8.2	-2.0	-6.2
$\mathrm{dL}_{\mathrm{t}_{1} 14,10.5}$	68.8	1.56	25.8	36.6	42.1	-5.5	-2.0	-3.4
$\mathrm{dL}_{\mathrm{t}, 15,10.5}$	68.8	1.56	25.1	35.0	41.3	-6.4	-2.0	-4.4
$\mathrm{dL}_{\text {t1,16,10.5: }}$	68.8	1.56	23.5	36.3	39.7	-3.5	-2.0	-1.5
dLti,17,10.5:	68.8	1.56	23.9	36.3	40.1	-3.8	-2.0	-1.8
$\mathrm{dL}_{\text {t1, 18,10.5: }}$	70.3	1.56	23.3	37.2	39.6	-2.4	-2.0	-0.4
dLti,19,10.5:	70.3	1.56	26.1	39.2	42.4	-3.2	-2.0	-1.2
$\mathrm{dL}_{\text {t1,20,10.5: }}$	70.3	1.56	25.8	33.3	42.1	-8.8	-2.0	-6.8
$\mathrm{dL}_{11,21,10.5}$	70.3	1.56	24.6	35.7	40.9	-5.2	-2.0	-3.2
$\mathrm{dL}_{\text {t1,22,10.5: }}$	73.4	1.56	26.7	37.4	43.0	-5.5	-2.0	-3.5
$\mathrm{dL}_{\text {t1, 23,10.5: }}$	70.3	1.56	23.0	34.1	39.3	-5.2	-2.0	-3.2
dLti,24,10.5:	70.3	1.56	24.6	33.3	40.9	-7.6	-2.0	-5.6
dLti,25,10.5:	68.8	1.56	24.1	34.0	40.3	-6.4	-2.0	-4.4
$\mathrm{dL}_{\text {t1,26,10.5: }}$	68.8	1.56	23.5	35.8	39.7	-3.9	-2.0	-1.9
$\mathrm{dL}_{\text {t1, 27,10.5: }}$	68.8	1.56	24.1	36.7	40.3	-3.6	-2.0	-1.6
$\mathrm{dL}_{\text {t1, 28,10.5: }}$	68.8	1.56	25.2	35.1	41.4	-6.3	-2.0	-4.3
dLti,29,10.5:	68.8	1.56	25.4	31.8	41.6	-9.8	-2.0	-7.8
dLti,30,10.5:	68.8	1.56	24.8	36.2	41.0	-4.8	-2.0	-2.8
$\mathrm{dL}_{\text {t1,31,10.5: }}$	70.3	1.56	22.7	36.8	39.0	-2.2	-2.0	-0.2
$\mathrm{dL}_{\text {t1,32,10.5: }}$	68.8	1.56	20.9	34.6	37.1	-2.5	-2.0	-0.5
$\mathrm{dL}_{\text {t1,33,10.5: }}$	68.8	1.56	21.6	35.4	37.8	-2.4	-2.0	-0.4
dLti,34,10.5:	68.8	1.56	22.3	37.1	38.5	-1.4	-2.0	0.6
$\mathrm{dL}_{\text {t1,35,10.5: }}$	68.8	1.56	22.7	36.8	38.9	-2.2	-2.0	-0.2
dLti,36,10.5:	70.3	1.56	24.7	33.4	41.0	-7.6	-2.0	-5.6
dLti,37,10.5:	70.3	1.56	25.2	35.3	41.5	-6.3	-2.0	-4.3
$\mathrm{dL}_{\text {t1,38,10.5: }}$	68.8	1.56	24.7	33.8	40.9	-7.2	-2.0	-5.2
$\mathrm{dL}_{\text {t1, } 39,10.5}$:	68.8	1.56	26.2	33.5	42.4	-9.0	-2.0	-7.0
$\mathrm{dL}_{\text {t1,42,10.5: }}$	68.8	1.56	24.9	33.2	41.1	-7.9	-2.0	-5.9
$\mathrm{dL}_{\text {t1,43,10.5: }}$	70.3	1.56	25.1	38.7	41.4	-2.7	-2.0	-0.7
dLti,44,10.5:	68.8	1.56	22.2	38.3	38.4	-0.1	-2.0	1.9
$\mathrm{dL}_{\text {t1,45,10.5: }}$	68.8	1.56	21.9	38.2	38.1	0.1	-2.0	2.1
$\mathrm{dL}_{\text {t1,46,10.5: }}$	68.8	1.56	25.4	33.7	41.6	-7.9	-2.0	-5.9
$\mathrm{dL}_{\mathrm{t}_{1}, 47,10.5}$	68.8	1.56	24.1	35.4	40.4	-5.0	-2.0	-3.0
dLti,48,10.5:	68.8	1.56	23.5	35.5	39.7	-4.2	-2.0	-2.2
$\mathrm{dL}_{\text {t1,49,10,5: }}$	68.8	1.56	24.9	34.8	41.2	-6.4	-2.0	-4.4
$\mathrm{dL}_{11,50,10.5}$	71.9	1.56	27.7	35.8	44.0	-8.2	-2.0	-6.2
dLt1,51,10.5:	68.8	1.56	24.9	35.9	41.1	-5.2	-2.0	-3.2
dL ${ }_{\text {11,52,10.5: }}$	68.8	1.56	23.0	37.0	39.3	-2.3	-2.0	-0.3
dLti,53,10.5:	73.4	1.56	26.0	35.9	42.3	-6.4	-2.0	-4.4
$\mathrm{dL}_{11,54,10.5}$	68.8	1.56	23.5	34.6	39.7	-5.1	-2.0	-3.1

Windlectric Inc.
Amherst Island Wind Project
Page 83 of 112
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\text {t1,55,10.5 }}$	68.8	1.56	22.9	35.0	39.1	-4.1	-2.0	-2.1
dLtı,56,10.5:	68.8	1.56	24.7	37.2	40.9	-3.7	-2.0	-1.7
$\mathrm{dL}_{\text {t1,57,10.5: }}$	70.3	1.56	24.3	31.2	40.6	-9.4	-2.0	-7.4
dLti,58,10.5:	68.8	1.56	24.8	33.7	41.0	-7.2	-2.0	-5.2
$\mathrm{dL}_{\text {t1,59,10.5: }}$	70.3	1.56	25.3	37.1	41.6	-4.5	-2.0	-2.5
$\mathrm{dL}_{11,60,10.5}$	68.8	1.56	25.2	34.6	41.5	-6.9	-2.0	-4.9
$\mathrm{dL}_{\mathrm{t}_{1,61,10.5} \text { : }}$	70.3	1.56	25.5	33.5	41.8	-8.2	-2.0	-6.2
$\mathrm{dL}_{\text {t1,62,10.5: }}$	68.8	1.56	25.9	32.1	42.1	-10.0	-2.0	-8.0
dLti1,64,10.5:	68.8	1.56	22.1	36.1	38.4	-2.2	-2.0	-0.2
$\mathrm{dL}_{\text {t1,65,10.5 }}$	68.8	1.56	22.4	38.9	38.7	0.2	-2.0	2.2
$\mathrm{dL}_{\text {t1,66,10.5: }}$	70.3	1.56	27.7	36.0	44.0	-8.0	-2.0	-6.0
$\mathrm{dL}_{\text {11,67,10.5: }}$	70.3	1.56	26.0	33.7	42.3	-8.6	-2.0	-6.6
$\mathrm{dL}_{\text {11,68,10.5 }}$	68.8	1.56	25.4	34.0	41.6	-7.7	-2.0	-5.7
dLti,69,10.5:	70.3	1.56	26.4	33.8	42.7	-8.9	-2.0	-6.9
$\mathrm{dL}_{\text {t1,70,10.5: }}$	70.3	1.56	25.5	37.0	41.8	-4.7	-2.0	-2.7
$\mathrm{dL}_{\text {t1,71,10.5: }}$	70.3	1.56	25.4	37.2	41.7	-4.5	-2.0	-2.5
$\mathrm{dL}_{11,72,10.5}$	70.3	1.56	25.5	35.9	41.8	-5.9	-2.0	-3.9
$\mathrm{dL}_{\mathrm{t} 2,1,10.5}$:	140.6	1.56	28.6	42.5	44.9	-2.4	-2.0	-0.4
dLti2, 210.5 :	140.6	1.56	28.5	36.0	44.8	-8.7	-2.0	-6.7
$\mathrm{dL}_{\mathrm{t} 2,3,10.5}$:	140.6	1.56	28.8	38.3	45.1	-6.8	-2.0	-4.8
dLt ${ }_{\text {L2,5,10.5: }}$	140.6	1.56	27.2	40.4	43.5	-3.1	-2.0	-1.1
$\mathrm{dL}_{\mathrm{t} 2,8,10.5}$:	140.6	1.56	27.4	43.4	43.7	-0.3	-2.0	1.7
$\mathrm{dL}_{\mathrm{t} 2,11,10.5}$	139.1	1.56	27.3	42.3	43.6	-1.3	-2.0	0.7
$\mathrm{dL}_{\mathrm{t}, 12,10.5}$	132.8	1.56	28.1	40.0	44.4	-4.4	-2.0	-2.4
$\mathrm{dL}_{\mathrm{t}, 13,10,5}$	134.4	1.56	27.7	41.3	44.0	-2.7	-2.0	-0.7
dL $\mathrm{Lt}_{2,14,10.5}$	137.5	1.56	28.3	41.8	44.6	-2.8	-2.0	-0.7
$\mathrm{dL}_{\mathrm{t}, 15,10.5}$	137.5	1.56	27.6	36.3	43.9	-7.6	-2.0	-5.6
$\mathrm{dL}_{\mathrm{t}_{2,18,10,5} \text { : }}$	140.6	1.56	27.3	41.1	43.6	-2.5	-2.0	-0.5
$\mathrm{dL}_{\mathrm{t} 2,19,10.5}$	140.6	1.56	29.6	43.1	45.9	-2.8	-2.0	-0.8
$\mathrm{dL}_{\mathrm{t} 2,20,10.5}$:	140.6	1.56	29.6	41.1	45.9	-4.8	-2.0	-2.8
dLti2,21,10.5:	140.6	1.56	28.6	44.1	44.9	-0.8	-2.0	1.2
dL $\mathrm{L}_{\mathrm{t}, 22,10.5}$	140.6	1.56	30.0	40.9	46.3	-5.4	-2.0	-3.4
$\mathrm{dL}_{\mathrm{t}_{2}, 23,10,5}$	139.1	1.56	27.3	35.7	43.6	-7.9	-2.0	-5.8
$\mathrm{dL}_{\mathrm{t} 2,24,10.5}$	140.6	1.56	28.5	40.4	44.8	-4.5	-2.0	-2.5
$\mathrm{dL}_{\mathrm{t} 2,25,10.5}$	137.5	1.56	27.8	37.2	44.1	-6.9	-2.0	-4.8
dLti2,28,10.5:	135.9	1.56	27.9	39.0	44.2	-5.2	-2.0	-3.1
$\mathrm{dL}_{\mathrm{t}, 29,10.5}$	135.9	1.56	28.3	43.8	44.6	-0.8	-2.0	1.2
dLti2,30,10,5:	135.9	1.56	28.2	43.2	44.5	-1.3	-2.0	0.7
dL $\mathrm{Lt}_{2,32,10.5}$	135.9	1.56	25.4	40.4	41.7	-1.2	-2.0	0.8
$\mathrm{dL}_{\mathrm{t} 2,33,10.5}$	139.1	1.56	25.4	41.4	41.7	-0.4	-2.0	1.7
$\mathrm{dL}_{\mathrm{t} 2,34,10.5}$	137.5	1.56	26.6	41.7	42.9	-1.1	-2.0	0.9
$\mathrm{dL}_{\mathrm{t} 2,36,10,5}$	139.1	1.56	27.9	38.1	44.2	-6.1	-2.0	-4.1
dL $\mathrm{L}_{2,37,10.5 \text { : }}$	140.6	1.56	29.1	40.4	45.4	-5.0	-2.0	-3.0
dLti2,40,10.5:	139.1	1.56	29.5	37.2	45.8	-8.7	-2.0	-6.7
$\mathrm{dL}_{\mathrm{t} 2,41,10.5}$	139.1	1.56	29.6	39.8	45.9	-6.1	-2.0	-4.1
$\mathrm{dL}_{\mathrm{L} 2,43,10.5}$	142.2	1.56	29.2	43.6	45.5	-2.0	-2.0	0.0
$\mathrm{dL}_{\mathrm{t} 2,49,10.5}$	139.1	1.56	28.3	38.0	44.6	-6.6	-2.0	-4.6
dLt ${ }_{\text {t2,51,10.5: }}$	137.5	1.56	28.2	38.4	44.5	-6.2	-2.0	-4.2
$\mathrm{dL}_{\mathrm{L} 2,53,10.5}$	140.6	1.56	28.9	41.4	45.2	-3.8	-2.0	-1.8
$\mathrm{dL}_{\mathrm{t} 2,54,10.5}$	135.9	1.56	26.8	42.1	43.1	-1.0	-2.0	1.0
dLti2,55,10.5:	140.6	1.56	27.3	38.3	43.6	-5.4	-2.0	-3.3
$\mathrm{dL}_{\mathrm{t} 2,57,10.5}$:	139.1	1.56	27.7	41.7	44.0	-2.3	-2.0	-0.3
dLti2,59,10,5:	140.6	1.56	28.2	40.9	44.5	-3.6	-2.0	-1.6
$\mathrm{dL}_{\mathrm{L} 2,60,10,5}$	137.5	1.56	28.0	40.8	44.3	-3.5	-2.0	-1.5

NOISE

Windlectric Inc.
Amherst Island Wind Project
Page 84 of 112
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\text {t2,62,10.5: }}$	137.5	1.56	28.9	38.1	45.2	-7.2	-2.0	-5.1
dL ${ }_{\text {t2,63,10.5: }}$	140.6	1.56	30.7	39.6	47.0	-7.4	-2.0	-5.3
dL ${ }_{\text {L2, } 24,10.5}$:	137.5	1.56	26.3	38.8	42.6	-3.8	-2.0	-1.8
dL ${ }_{\text {t2,65,10.5: }}$	137.5	1.56	26.8	41.1	43.1	-1.9	-2.0	0.1
$\mathrm{dL}_{\text {t2,67,10.5: }}$	140.6	1.56	29.9	43.2	46.2	-2.9	-2.0	-0.9
$\mathrm{dL}_{\text {t2,68,10.5: }}$	137.5	1.56	29.1	41.8	45.4	-3.6	-2.0	-1.6
$\mathrm{dL}_{\text {t2, } 70,10.5}$:	140.6	1.56	28.7	38.5	45.0	-6.5	-2.0	-4.4
$\mathrm{dL}_{\text {t2, 71,10.5: }}$	142.2	1.56	29.0	40.9	45.3	-4.4	-2.0	-2.4
dL ${ }_{\text {L2,72,10.5: }}$	142.2	1.56	29.1	38.5	45.4	-6.9	-2.0	-4.9
$\mathrm{dL}_{\text {t2, 73,10.5: }}$	139.1	1.56	28.5	38.0	44.8	-6.8	-2.0	-4.8
$\mathrm{dL}_{\text {ti,4,10.5: }}$	175.0	1.56	27.3	39.9	43.6	-3.7	-2.0	-1.7
dL ${ }_{\text {t3,6,10.5: }}$	175.0	1.56	27.3	38.8	43.6	-4.7	-2.0	-2.7
$\mathrm{dL}_{13,7,10,5}$	175.0	1.56	28.4	36.9	44.7	-7.8	-2.0	-5.8
dL $\mathrm{L}_{3,9,10,5 \text { : }}$	175.0	1.56	28.3	39.0	44.6	-5.6	-2.0	-3.6
$\mathrm{dL}_{\text {L3, 10,10.5: }}$	175.0	1.56	28.6	41.7	44.9	-3.3	-2.0	-1.2
$\mathrm{dL}_{\text {t3,16,10.5: }}$	175.0	1.56	27.0	40.7	43.3	-2.7	-2.0	-0.6
$\mathrm{dL}_{\text {ti, 17,10.5: }}$	175.0	1.56	27.8	34.2	44.1	-9.9	-2.0	-7.9
$\mathrm{dL}_{\text {L3, 26,10.5: }}$	175.0	1.56	28.0	39.2	44.3	-5.1	-2.0	-3.1
dL $\mathrm{L}_{3,27,10.5}$	175.0	1.56	27.3	41.2	43.6	-2.5	-2.0	-0.4
dL ${ }_{\text {ti,31,10.5: }}$	175.0	1.56	27.4	39.1	43.7	-4.6	-2.0	-2.6
dL ${ }_{\text {L3,35,10.5: }}$	175.0	1.56	27.6	40.7	43.9	-3.1	-2.0	-1.1
$\mathrm{dL}_{\text {L3,38,10.5: }}$	175.0	1.56	28.0	40.6	44.3	-3.6	-2.0	-1.6
dL $\mathrm{L}_{3,39,10.5}$:	175.0	1.56	28.9	37.7	45.2	-7.5	-2.0	-5.5
$\mathrm{dL}_{\text {t3,42,10.5: }}$	175.0	1.56	28.2	39.7	44.5	-4.9	-2.0	-2.8
dL $\mathrm{L}_{3,44,10.5}$:	175.0	1.56	26.8	42.1	43.1	-1.1	-2.0	1.0
dL $\mathrm{L}_{3,45,10.5}$:	175.0	1.56	26.1	42.0	42.4	-0.4	-2.0	1.6
dL ${ }_{\text {I } 3,46,10.5}$:	175.0	1.56	28.0	39.0	44.3	-5.3	-2.0	-3.3
dL $\mathrm{L}_{3,47,10.5}$:	175.0	1.56	27.8	37.8	44.1	-6.3	-2.0	-4.3
$\mathrm{dL}_{\text {t3,48,10.5: }}$	175.0	1.56	27.3	40.5	43.6	-3.1	-2.0	-1.0
$\mathrm{dL}_{\text {t3,52,10.5: }}$	175.0	1.56	28.0	40.2	44.3	-4.1	-2.0	-2.0
dL ${ }_{\text {+3,56,10,5 }}$	175.0	1.56	27.9	40.6	44.2	-3.6	-2.0	-1.6
dL ${ }_{\text {L3,58,10.5: }}$	175.0	1.56	27.9	37.7	44.2	-6.5	-2.0	-4.5
$\mathrm{dL}_{\text {ti,61,10.5: }}$	175.0	1.56	28.6	39.1	44.9	-5.8	-2.0	-3.8
$\mathrm{dL}_{\text {L3,66,10.5: }}$	175.0	1.56	30.2	37.8	46.5	-8.7	-2.0	-6.7
$\mathrm{dL}_{\text {t4,5,10.5: }}$	232.8	1.56	27.2	33.5	43.6	-10.2	-2.1	-8.1
dL $\mathrm{t}_{4,6,10,5:}$	232.8	1.56	26.9	33.6	43.4	-9.7	-2.1	-7.7
$\mathrm{dL}_{\text {t4, } 7,10.5}$:	232.8	1.56	28.1	35.4	44.5	-9.1	-2.1	-7.0
dL $\mathrm{Lt}_{4,8,10.5}$:	232.8	1.56	27.6	34.1	44.0	-10.0	-2.1	-7.9
dL $\mathrm{Lt}_{4,9,10,5:}$	232.8	1.56	28.0	35.4	44.4	-8.9	-2.1	-6.9
$\mathrm{dL}_{44,13,10.5}$:	232.8	1.56	27.3	34.5	43.8	-9.3	-2.1	-7.2
dL $\mathrm{t}_{4,16,10.5}$:	232.8	1.56	26.3	33.0	42.7	-9.7	-2.1	-7.6
$\mathrm{dL}_{\text {t4, 17,10.5: }}$	232.8	1.56	27.7	35.3	44.1	-8.8	-2.1	-6.8
dL ${ }_{\text {t4, } 21,10,5 \text { : }}$	232.8	1.56	29.1	35.3	45.6	-10.2	-2.1	-8.2
dLtit, 28,10.5:	232.8	1.56	27.6	34.8	44.0	-9.2	-2.1	-7.2
$\mathrm{dL}_{\text {t4, 29,10.5: }}$	232.8	1.56	27.8	34.9	44.3	-9.4	-2.1	-7.3
dL ${ }_{\text {t4,31,10.5: }}$	232.8	1.56	27.3	35.2	43.7	-8.5	-2.1	-6.4
dL ${ }_{\text {t4, } 33,10.5}$:	232.8	1.56	26.4	32.9	42.8	-10.0	-2.1	-7.9
dLti4,35,10.5:	232.8	1.56	28.1	34.3	44.5	-10.2	-2.1	-8.1
dL $\mathrm{Lt}_{4,38,10.5}$:	232.8	1.56	27.9	36.4	44.3	-7.9	-2.1	-5.9
dL ${ }_{\text {t4,42,10.5: }}$	232.8	1.56	28.1	34.3	44.5	-10.2	-2.1	-8.1
dLtit,4,10.5:	232.8	1.56	29.4	36.0	45.8	-9.8	-2.1	-7.7
dL $\mathrm{Lt}_{4,45,10.5}$:	232.8	1.56	26.9	35.0	43.3	-8.3	-2.1	-6.2
dL ${ }_{\text {t4, 49,10.5: }}$	232.8	1.56	28.4	35.7	44.8	-9.1	-2.1	-7.0
$\mathrm{dL}_{44,54,10.5}$:	232.8	1.56	27.5	33.6	43.9	-10.3	-2.1	-8.3

ACOUSTICS

Windlectric Inc.
Page 85 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{44,55,10.5}$:	232.8	1.56	28.1	35.4	44.6	-9.2	-2.1	-7.1
dLt4,61,10.5:	232.8	1.56	28.2	36.2	44.7	-8.5	-2.1	-6.5
dL ${ }_{\text {t4,68,10.5: }}$	232.8	1.56	29.2	36.6	45.6	-9.0	-2.1	-7.0
dLta,70,10.5:	232.8	1.56	28.9	35.7	45.4	-9.7	-2.1	-7.6
dL t5,, ,10.5: $^{\text {P }}$	309.4	1.56	27.4	33.5	44.0	-10.5	-2.1	-8.3
$\mathrm{dL}_{\text {t5,10,10,5: }}$	307.8	1.56	27.9	35.8	44.4	-8.6	-2.1	-6.5
$\mathrm{dL}_{\text {t5,11,10.5: }}$	307.8	1.56	27.6	35.3	44.2	-8.8	-2.1	-6.7
$\mathrm{dL}_{\text {t5,12,10.5: }}$	307.8	1.56	26.7	35.1	43.2	-8.1	-2.1	-6.0
dLt5,14,10.5:	309.4	1.56	26.9	34.7	43.5	-8.8	-2.1	-6.7
dL ${ }_{\text {t5,15,10.5: }}$	309.4	1.56	26.0	36.5	42.5	-6.1	-2.1	-4.0
$\mathrm{dL}_{\text {t5,16,10.5: }}$	309.4	1.56	25.7	35.1	42.3	-7.2	-2.1	-5.1
$\mathrm{dL}_{\text {t5,17,10.5: }}$	309.4	1.56	27.0	34.4	43.6	-9.1	-2.1	-7.0
dL ${ }_{\text {t5,51,10.5: }}$	325.0	1.56	26.5	36.7	43.1	-6.4	-2.1	-4.2
dLt5,56,10.5:	325.0	1.56	25.5	31.9	42.1	-10.2	-2.1	-8.1
$\mathrm{dL}_{\text {t5,58,10.5: }}$	325.0	1.56	27.1	33.8	43.7	-9.9	-2.1	-7.8
dL ${ }_{\text {t6,32,10.5: }}$	7594.2	1.56	-16.3	-10.1	12.7	-22.8	-4.9	-17.8
dL ${ }_{\text {t6,38,10.5: }}$	7906.7	1.56	-17.4	-11.2	11.8	-23.1	-5.0	-18.1
dLt7,38,10.5:	7906.7	1.56	-17.4	-11.2	11.8	-23.1	-5.0	-18.1
dLt7,41,10.5:	7917.7	1.56	-17.2	-11.2	12.1	-23.2	-5.0	-18.2
$\mathrm{dL}_{\text {t7,48,10.5: }}$	7997.4	1.56	-17.2	-10.9	12.1	-23.0	-5.0	-18.0
dLt7,60,10.5:	8038.0	1.56	-17.7	-11.6	11.7	-23.2	-5.0	-18.2
	8000.5	1.56	-17.0	-10.8	12.3	-23.1	-5.0	-18.1

BIN 10.5: Tonal components determined - Compact

Spectrum	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	dL ${ }_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	dL ${ }_{\text {tn, }, \text {, } \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	dLtn,j,k	$\mathrm{f}_{\mathbf{T}}$	dL ${ }_{\text {tn, }, \mathrm{k}}$
\#\#	[Hz]	[dB]										
1	70.3	-2.3	140.6	-2.4	---	---	---	---	---	---	---	---
2	70.3	-4.4	140.6	-8.7	---	---	---	---	---	---	---	---
3	75.0	-1.5	140.6	-6.8	---	---	---	---	---	---	---	---
4	68.8	-2.1	---	---	175.0	-3.7	---	---	---	---	---	---
5	68.8	-5.9	140.6	-3.1	---	---	232.8	-10.2	---	---	---	---
6	68.8	-7.3	---	---	175.0	-4.7	232.8	-9.7	---	---	---	---
7	68.8	-3.6	---	---	175.0	-7.8	232.8	-9.1	---	---	---	---
8	70.3	-5.5	140.6	-0.3	---	---	232.8	-10.0	---	---	---	---
9	82.8	-1.2	---	---	175.0	-5.6	232.8	-8.9	309.4	-10.5	---	---
10	82.8	-9.0	---	---	175.0	-3.3	---	---	307.8	-8.6	---	---
11	82.8	-4.6	139.1	-1.3	---	---	---	---	307.8	-8.8	--	---
12	68.8	-8.2	132.8	-4.4	---	---	---	---	307.8	-8.1	---	---
13	---	---	134.4	-2.7	---	---	232.8	-9.3	---	---	---	---
14	68.8	-5.5	137.5	-2.8	---	---	---	---	309.4	-8.8	-	---
15	68.8	-6.4	137.5	-7.6	---	---	---	---	309.4	-6.1	---	---
16	68.8	-3.5	---	---	175.0	-2.7	232.8	-9.7	309.4	-7.2	---	---
17	68.8	-3.8	---	---	175.0	-9.9	232.8	-8.8	309.4	-9.1	---	---
18	70.3	-2.4	140.6	-2.5	---	--	---	---	---	---	---	---
19	70.3	-3.2	140.6	-2.8	---	--	---	---	---	---	---	---
20	70.3	-8.8	140.6	-4.8	---	---	---	---	---	---	---	---
21	70.3	-5.2	140.6	-0.8	---	---	232.8	-10.2	---	---	---	--
22	73.4	-5.5	140.6	-5.4	---	---	---	---	---	---	---	---
23	70.3	-5.2	139.1	-7.9	---	---	---	---	---	---	---	---
24	70.3	-7.6	140.6	-4.5	---	---	---	---	---	---	---	---
25	68.8	-6.4	137.5	-6.9	---	---	---	---	---	---	---	---
26	68.8	-3.9	---	---	175.0	-5.1	---	---	---	---	---	---
27	68.8	-3.6	---	---	175.0	-2.5	---	---	---	---	---	---

Windlectric Inc.
Page 86 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

28	68.8	-6.3	135.9	-5.2	---	---	232.8	-9.2	---	---	---	---
29	68.8	-9.8	135.9	-0.8	---	---	232.8	-9.4	---	---	---	---
30	68.8	-4.8	135.9	-1.3	---	---	---	---	---	---	---	---
31	70.3	-2.2	---	---	175.0	-4.6	232.8	-8.5	---	---	---	---
32	68.8	-2.5	135.9	-1.2	---	---	---	---	---	---	7594.2	-22.8
33	68.8	-2.4	139.1	-0.4	---	---	232.8	-10.0	---	---	---	---
34	68.8	-1.4	137.5	-1.1	---	---	---	---	---	---	---	---
35	68.8	-2.2	---	---	175.0	-3.1	232.8	-10.2	---	---	---	---
36	70.3	-7.6	139.1	-6.1	---	---	---	---	---	---	---	---
37	70.3	-6.3	140.6	-5.0	---	---	---	---	---	---	---	---
38	68.8	-7.2	---	---	175.0	-3.6	232.8	-7.9	---	---	7906.7	-23.1
39	68.8	-9.0	---	---	175.0	-7.5	---	---	---	---	---	---
40	---	---	139.1	-8.7	---	---	---	---	---	---	---	---
41	---	---	139.1	-6.1	---	---	---	---	---	---	--	---
42	68.8	-7.9	---	---	175.0	-4.9	232.8	-10.2	---	---	---	---
43	70.3	-2.7	142.2	-2.0	---	---	232.8	-9.8	---	---	---	---
44	68.8	-0.1	---	---	175.0	-1.1	---	---	---	--	---	---
45	68.8	0.1	---	---	175.0	-0.4	232.8	-8.3	---	---	---	---
46	68.8	-7.9	---	---	175.0	-5.3	---	---	---	---	---	---
47	68.8	-5.0	---	---	175.0	-6.3	---	---	---	---	---	---
48	68.8	-4.2	---	---	175.0	-3.1	---	---	---	---	---	---
49	68.8	-6.4	139.1	-6.6	---	---	232.8	-9.1	---	---	---	---
50	71.9	-8.2	--	---	---	---	---	---	---	---	---	---
51	68.8	-5.2	137.5	-6.2	---	---	---	---	325.0	-6.4	---	---
52	68.8	-2.3	--	---	175.0	-4.1	---	---	---	---	---	---
53	73.4	-6.4	140.6	-3.8	---	---	---	---	---	---	---	---
54	68.8	-5.1	135.9	-1.0	---	---	232.8	-10.3	---	---	---	---
55	68.8	-4.1	140.6	-5.4	---	---	232.8	-9.2	---	---	---	---
56	68.8	-3.7	---	---	175.0	-3.6	---	---	325.0	-10.2	---	---
57	70.3	-9.4	139.1	-2.3	---	---	---	---	---	---	---	---
58	68.8	-7.2	---	---	175.0	-6.5	---	---	325.0	-9.9	---	--
59	70.3	-4.5	140.6	-3.6	---	---	---	---	---	---	---	---
60	68.8	-6.9	137.5	-3.5	---	---	---	---	---	---	---	---
61	70.3	-8.2	---	---	175.0	-5.8	232.8	-8.5	---	---	---	---
62	68.8	-10.0	137.5	-7.2	---	---	---	---	---	---	---	---
63	---	---	140.6	-7.4	--	---	---	---	---	---	---	---
64	68.8	-2.2	137.5	-3.8	---	---	---	---	---	---	---	--
65	68.8	0.2	137.5	-1.9	---	---	---	---	--	---	---	---
66	70.3	-8.0	---	---	175.0	-8.7	---	---	---	---	---	---
67	70.3	-8.6	140.6	-2.9	---	---	---	---	---	---	---	---
68	68.8	-7.7	137.5	-3.6	---	---	232.8	-9.0	---	---	---	---
69	70.3	-8.9	---	---	---	---	---	---	---	---	---	---
70	70.3	-4.7	140.6	-6.5	---	---	232.8	-9.7	---	---	---	---
71	70.3	-4.5	142.2	-4.4	---	---	---	--	---	---	---	---
72	70.3	-5.9	142.2	-6.9	---	---	---	---	---	---	---	---
73	---	---	139.1	-6.8	---	---	---	---	---	---	---	---
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL} \mathrm{L}_{\mathrm{k}}[\mathrm{dB}]$	70.2	-4.7	139.6	-5.4	175.0	-8.5	232.8	-12.7	310.0	-13.9	7598.5	-28.0
$\mathrm{La}_{\mathrm{a}}[\mathrm{dB}]$		-2.0		-2.0		-2.0		-2.1		-2.1		-5.0
$\mathrm{dL}_{\mathrm{a}, \mathrm{k}}[\mathrm{dB}]$		-2.7		-3.3		-6.5		-10.7		-11.8		-23.1
$\mathrm{K}_{\text {TN }}[\mathrm{dB}]$		0		0		0		0		0		0

2

Windlectric Inc.

Windlectric Inc.
Amherst Island Wind Project
Acoustic Test Report, WTG S29

BIN 11: Tonal components determined

	Frequency	delta f	$\mathrm{L}_{\text {pr,avg, }, \mathrm{k}}$	$\mathrm{Lppt,j}, \mathrm{k}$	$\mathrm{L}_{\mathrm{pn}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\mathrm{aj}, \mathrm{j}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dLtit,1,11:	70.3	1.56	24.2	37.6	40.5	-2.8	-2.0	-0.8
dL ${ }_{\text {ti, } 2,11}$:	71.9	1.56	23.1	39.8	39.4	0.4	-2.0	2.4
$\mathrm{dL}_{t 1,3,11}$:	68.8	1.56	22.6	34.1	38.8	-4.7	-2.0	-2.7
$\mathrm{dL}_{(1,4,41}$:	70.3	1.56	23.8	33.9	40.1	-6.2	-2.0	-4.2
$\mathrm{dL}_{\mathrm{t} 1,5,11}$:	70.3	1.56	26.6	34.1	42.9	-8.8	-2.0	-6.8
$\mathrm{dL}_{\mathrm{t} 1,6,11}$:	70.3	1.56	22.3	36.1	38.6	-2.5	-2.0	-0.5
dLtit, ${ }_{\text {dil }}$	70.3	1.56	21.4	36.1	37.7	-1.6	-2.0	0.4
$\mathrm{dL}_{\mathrm{t} 1,8,11}$	68.8	1.56	21.0	35.9	37.2	-1.3	-2.0	0.7
$\mathrm{dL}_{\mathrm{t} 1,9,11}$:	82.8	1.56	26.4	36.5	42.7	-6.1	-2.0	-4.1
$\mathrm{dL}_{\text {ti, } 10,11:}$	70.3	1.56	24.8	33.5	41.1	-7.6	-2.0	-5.6
$\mathrm{dL}_{\text {t1, } 11,11:}$	70.3	1.56	25.0	32.7	41.3	-8.6	-2.0	-6.6
$\mathrm{dL}_{\mathrm{t}, 12,11}$:	71.9	1.56	23.9	37.0	40.2	-3.2	-2.0	-1.2
dL ${ }_{\text {t1,14,11: }}$	68.8	1.56	25.5	33.7	41.7	-8.0	-2.0	-6.0
dLtil,15,11:	68.8	1.56	24.3	35.9	40.6	-4.7	-2.0	-2.7
$\mathrm{dL}_{\mathrm{t} 1,16,11}$:	70.3	1.56	24.2	35.2	40.5	-5.3	-2.0	-3.3
dL $\mathrm{tt}_{1,17,11}$	70.3	1.56	25.7	32.2	42.0	-9.8	-2.0	-7.8
$\mathrm{dL}_{\text {t1, } 18,11}$:	68.8	1.56	24.1	34.4	40.4	-6.0	-2.0	-4.0
dLtit,19,11:	68.8	1.56	23.5	37.0	39.7	-2.6	-2.0	-0.6
dL $\mathrm{tt}, 20,11$	71.9	1.56	22.5	36.1	38.8	-2.7	-2.0	-0.7
$\mathrm{dL}_{11,21,11}$	68.8	1.56	24.1	31.2	40.4	-9.2	-2.0	-7.2
$\mathrm{dL}_{11,22,11}$:	70.3	1.56	26.5	37.5	42.8	-5.4	-2.0	-3.4
$\mathrm{dL}_{\text {t1, } 23,11}$:	71.9	1.56	24.6	39.1	40.9	-1.8	-2.0	0.2
dL $\mathrm{tt}, 24,11$	70.3	1.56	21.7	38.2	38.0	0.2	-2.0	2.2
$\mathrm{dL}_{\text {t1, } 25,11}$:	71.9	1.56	25.7	39.4	42.0	-2.6	-2.0	-0.6
$\mathrm{dL}_{\text {t1, } 26,11}$:	71.9	1.56	25.9	36.4	42.2	-5.8	-2.0	-3.8
dLtit,27,11:	71.9	1.56	25.3	38.2	41.6	-3.4	-2.0	-1.4
$\mathrm{dL}_{\text {t1, } 28,11}$:	68.8	1.56	23.8	31.4	40.0	-8.6	-2.0	-6.6
dLtil, 29,11:	68.8	1.56	24.2	35.5	40.4	-4.9	-2.0	-2.9
$\mathrm{dL}_{\text {t1, } 30,11}$:	71.9	1.56	24.5	38.4	40.8	-2.4	-2.0	-0.4
dL $\mathrm{t}_{1,31,11:}$	68.8	1.56	23.1	35.8	39.3	-3.5	-2.0	-1.5
dLtil32,11:	71.9	1.56	25.8	36.6	42.1	-5.6	-2.0	-3.6
$\mathrm{dL}_{11,35,11}$	70.3	1.56	23.3	31.9	39.6	-7.7	-2.0	-5.7
$\mathrm{dL}_{\text {t1, } 36,11}$:	70.3	1.56	23.6	34.3	39.9	-5.6	-2.0	-3.6
$\mathrm{dL}_{\underline{11,37,11}}$	68.8	1.56	23.5	35.9	39.8	-3.9	-2.0	-1.9
dLtil,38,11:	70.3	1.56	22.5	36.2	38.8	-2.6	-2.0	-0.6
dLtil,39,11:	68.8	1.56	23.4	33.3	39.6	-6.3	-2.0	-4.3
$\mathrm{dL}_{\text {t1, } 40,11}$:	68.8	1.56	23.9	34.7	40.2	-5.4	-2.0	-3.4
dL $\mathrm{tt}, 41,11$	70.3	1.56	24.0	33.8	40.3	-6.5	-2.0	-4.5
$\mathrm{dL}_{\text {t1,42,11: }}$	71.9	1.56	23.7	34.3	40.0	-5.6	-2.0	-3.6
dL $\mathrm{tt}, 43,11$	68.8	1.56	24.9	35.9	41.1	-5.2	-2.0	-3.2
$\mathrm{dL}_{\text {t1,44,11: }}$	68.8	1.56	24.2	33.9	40.5	-6.5	-2.0	-4.5
$\mathrm{dL}_{\text {t1, 45,11: }}$	71.9	1.56	24.1	37.1	40.4	-3.3	-2.0	-1.3
dL $\mathrm{t}_{1,46,11}$	68.8	1.56	25.4	37.2	41.6	-4.4	-2.0	-2.4
$\mathrm{dL}_{11,47,11}$:	70.3	1.56	25.5	32.4	41.8	-9.4	-2.0	-7.4
$\mathrm{dL}_{\text {t1, 48,41: }}$	71.9	1.56	27.1	37.5	43.4	-5.9	-2.0	-3.9
$\mathrm{dL}_{\text {t1, 49, } 11}$:	71.9	1.56	24.4	38.0	40.7	-2.7	-2.0	-0.7
dL $\mathrm{tt}, 50,11$	68.8	1.56	23.2	36.0	39.4	-3.4	-2.0	-1.4
dL $\mathrm{t}_{1,51,11:}$	68.8	1.56	25.6	35.7	41.8	-6.1	-2.0	-4.1
$\mathrm{dL}_{\text {t1, } 52,11}$:	75.0	1.56	24.1	38.0	40.4	-2.4	-2.0	-0.4
dL $\mathrm{ta} 1,53,11:^{\text {a }}$	68.8	1.56	22.6	38.8	38.8	0.0	-2.0	2.0
$\mathrm{dL}_{\mathrm{t} 1,54,11}$:	70.3	1.56	25.5	34.9	41.8	-6.8	-2.0	-4.8

Windlectric Inc.
Amherst Island Wind Project
Page 90 of 112
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\text {t1, } 56,11}$:	70.3	1.56	23.7	35.2	40.0	-4.9	-2.0	-2.9
dL ${ }_{\text {t1, } 57,11:}$	68.8	1.56	22.4	34.6	38.6	-4.0	-2.0	-2.0
$\mathrm{dL}_{\text {t1, } 58,11}$:	68.8	1.56	24.0	33.2	40.3	-7.1	-2.0	-5.1
dLti,59,11:	73.4	1.56	24.6	37.6	40.9	-3.3	-2.0	-1.3
$\mathrm{dL}_{\text {t1,60,11 }}$	68.8	1.56	23.1	37.2	39.3	-2.1	-2.0	-0.1
$\mathrm{dL}_{\text {t1,61,11: }}$	68.8	1.56	23.8	33.8	40.0	-6.2	-2.0	-4.1
$\mathrm{dL}_{\text {t1,62,11: }}$	68.8	1.56	24.7	35.3	41.0	-5.7	-2.0	-3.7
$\mathrm{dL}_{\text {t1,64,11: }}$	68.8	1.56	21.8	36.9	38.1	-1.2	-2.0	0.8
dL ${ }_{\text {t1,65,11: }}$	68.8	1.56	22.7	35.5	39.0	-3.4	-2.0	-1.4
$\mathrm{dL}_{\text {t1,66,11: }}$	70.3	1.56	24.4	32.5	40.7	-8.2	-2.0	-6.2
$\mathrm{dL}_{\text {t1,67,11 }}$:	71.9	1.56	22.4	35.8	38.7	-2.9	-2.0	-0.9
$\mathrm{dL}_{\text {t1,68,11 }}$:	70.3	1.56	20.8	37.1	37.1	0.0	-2.0	2.0
$\mathrm{dL}_{\text {11,69,11: }}$	68.8	1.56	23.2	36.8	39.4	-2.6	-2.0	-0.6
dL $\mathrm{ta,70,11}$	71.9	1.56	24.7	35.7	41.0	-5.3	-2.0	-3.3
dL $\mathrm{Lt}_{1,73,11}$:	71.9	1.56	25.9	32.0	42.2	-10.2	-2.0	-8.2
$\mathrm{dL}_{11,74,11}$:	71.9	1.56	23.9	35.8	40.2	-4.3	-2.0	-2.3
$\mathrm{dL}_{11,75,11}$	68.8	1.56	25.4	33.7	41.6	-7.9	-2.0	-5.9
dL $\mathrm{t}_{\mathrm{t}, 76,11}$:	68.8	1.56	24.0	35.8	40.2	-4.4	-2.0	-2.4
dLtil ${ }_{\text {d7,11: }}$	68.8	1.56	23.2	35.3	39.4	-4.2	-2.0	-2.2
$\mathrm{dL}_{\text {t1,78,11: }}$	73.4	1.56	22.3	33.7	38.6	-4.9	-2.0	-2.9
dL $\mathrm{ta}_{1,79,11}$	71.9	1.56	25.3	34.5	41.6	-7.1	-2.0	-5.1
$\mathrm{dL}_{\text {t1,80,11: }}$	71.9	1.56	24.5	38.0	40.8	-2.8	-2.0	-0.8
dL $\mathrm{t}_{\mathrm{t}, 81,11}$:	71.9	1.56	24.8	31.7	41.1	-9.4	-2.0	-7.4
$\mathrm{dL}_{11,82,11}$	68.8	1.56	25.7	31.9	42.0	-10.1	-2.0	-8.1
$\mathrm{dL}_{11,83,11}$:	70.3	1.56	24.6	32.7	40.9	-8.2	-2.0	-6.2
dLL1,84,11:	71.9	1.56	23.8	37.4	40.1	-2.7	-2.0	-0.7
dLti, 85,11 :	71.9	1.56	23.3	35.7	39.6	-3.9	-2.0	-1.9
dL $\mathrm{ta} 1,86,11$	71.9	1.56	22.2	36.0	38.5	-2.5	-2.0	-0.5
$\mathrm{dL}_{11,87,11}$:	68.8	1.56	22.2	37.9	38.5	-0.6	-2.0	1.4
dLL ${ }_{\mathrm{t}, 88,11}$:	70.3	1.56	22.7	34.4	39.0	-4.7	-2.0	-2.6
dL $\mathrm{t} 1,89,11$	68.8	1.56	24.8	34.3	41.1	-6.8	-2.0	-4.8
dL ${ }_{\text {t1,90,11: }}$	76.6	1.56	24.9	32.9	41.2	-8.4	-2.0	-6.4
$\mathrm{dL}_{\text {t1,91,11 }}$:	70.3	1.56	26.1	34.3	42.4	-8.1	-2.0	-6.1
$\mathrm{dL}_{11,92,11}$:	75.0	1.56	26.1	37.8	42.4	-4.6	-2.0	-2.6
$\mathrm{dL}_{11,93,11}$:	68.8	1.56	24.6	34.7	40.9	-6.1	-2.0	-4.1
dL $\mathrm{t} 1,94,11$	70.3	1.56	24.3	32.7	40.6	-7.9	-2.0	-5.9
$\mathrm{dL}_{11,95,11}$:	70.3	1.56	25.0	33.8	41.3	-7.5	-2.0	-5.5
dL ${ }_{\text {t1,97,11: }}$	70.3	1.56	24.7	33.7	41.0	-7.3	-2.0	-5.3
dL ${ }_{11,98,11}$	70.3	1.56	26.5	33.7	42.8	-9.1	-2.0	-7.1
$\mathrm{dL}_{11,99,11}$:	71.9	1.56	27.1	35.5	43.4	-7.9	-2.0	-5.9
$\mathrm{dL}_{11,100,11}$:	68.8	1.56	24.7	36.0	40.9	-4.9	-2.0	-2.9
$\mathrm{dL}_{\text {(1, 101, }}$:	68.8	1.56	24.7	35.8	40.9	-5.1	-2.0	-3.1
dL ${ }_{11,102,11}$:	70.3	1.56	25.0	35.9	41.3	-5.4	-2.0	-3.4
dL ${ }_{\text {t1, } 103,11}$:	70.3	1.56	24.8	33.6	41.1	-7.5	-2.0	-5.5
$\mathrm{dL}_{\text {t1, 104, }}$:	68.8	1.56	25.7	34.8	41.9	-7.1	-2.0	-5.1
$\mathrm{dL}_{\text {ti, 105,11: }}$	70.3	1.56	26.2	33.2	42.5	-9.3	-2.0	-7.3
$\mathrm{dL}_{\text {t1, } 106,11}$:	70.3	1.56	25.0	36.1	41.3	-5.1	-2.0	-3.1
dL $\mathrm{t}_{2,9,11}$:	82.8	1.56	26.4	36.5	42.7	-6.1	-2.0	-4.1
$\mathrm{dL}_{\text {t2,33,11: }}$	98.4	1.56	25.0	41.0	41.3	-0.3	-2.0	1.7
dL $\mathrm{t}_{2,34,11}$	89.1	1.56	27.6	34.4	43.9	-9.5	-2.0	-7.5
dL ${ }_{\text {t2,71,11: }}$	106.3	1.56	27.6	43.0	43.9	-0.9	-2.0	1.1
dL ${ }_{\text {t2,72,11: }}$	93.8	1.56	25.8	46.3	42.2	4.1	-2.0	6.1
dL ${ }_{\text {t } 3,1,11}$:	142.2	1.56	28.0	43.0	44.3	-1.3	-2.0	0.7
dL ${ }_{\text {t3,5,11 }}$	142.2	1.56	29.5	38.3	45.8	-7.5	-2.0	-5.5

Windlectric Inc.
Amherst Island Wind Project
Page 91 of 112
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t}, 6,11}$:	140.6	1.56	26.1	40.5	42.4	-1.9	-2.0	0.1
dLti3,7,11:	140.6	1.56	25.9	40.8	42.2	-1.4	-2.0	0.6
$\mathrm{dL}_{\mathrm{t}_{3,9,11} \text { : }}$	139.1	1.56	28.3	37.1	44.6	-7.5	-2.0	-5.5
dL ${ }_{\text {t }}^{1,11,11}$:	139.1	1.56	28.0	42.4	44.3	-1.9	-2.0	0.1
$\mathrm{dL}_{\mathrm{t}, 12,11}$:	142.2	1.56	26.5	41.2	42.8	-1.6	-2.0	0.4
$\mathrm{dL}_{\mathrm{t} 3,13,11}$:	139.1	1.56	28.1	39.0	44.4	-5.4	-2.0	-3.4
$\mathrm{dL}_{\mathrm{t} 3,14,11}$:	139.1	1.56	27.5	36.6	43.8	-7.2	-2.0	-5.2
$\mathrm{dL}_{\mathrm{t}, 15,11}$:	139.1	1.56	27.3	40.5	43.6	-3.2	-2.0	-1.2
dLit ${ }^{\text {d } 17,11 \text { : }}$	139.1	1.56	28.3	37.0	44.6	-7.6	-2.0	-5.6
$\mathrm{dL}_{\mathrm{t} 3,19,11}$:	139.1	1.56	26.7	36.4	43.0	-6.6	-2.0	-4.6
dL $\mathrm{L}_{\mathbf{1}, 22,11}$:	140.6	1.56	29.7	42.8	46.0	-3.2	-2.0	-1.2
dL $\mathrm{L}_{\mathbf{t}, 23,11}$:	142.2	1.56	28.0	45.7	44.3	1.4	-2.0	3.4
dL ${ }_{\text {ti,24,11: }}$	142.2	1.56	28.0	40.7	44.3	-3.7	-2.0	-1.6
dLit $3,25,11$:	142.2	1.56	28.5	40.3	44.8	-4.5	-2.0	-2.5
dL $\mathrm{L}_{\mathrm{t}, 28,11}$:	139.1	1.56	26.8	44.0	43.1	0.9	-2.0	2.9
dL $\mathrm{L}_{\mathbf{t}, 29,11}$:	137.5	1.56	27.5	38.0	43.8	-5.8	-2.0	-3.8
dL ${ }_{\text {t } 3,30,11}$:	143.8	1.56	27.2	35.1	43.5	-8.5	-2.0	-6.4
dL ${ }_{\text {t3,31,11: }}$	139.1	1.56	27.1	41.0	43.4	-2.4	-2.0	-0.4
dL $\mathrm{t}_{3,32,11}$:	140.6	1.56	29.3	38.8	45.6	-6.8	-2.0	-4.7
dL ${ }_{\text {ti,36,11: }}$	140.6	1.56	26.9	39.5	43.2	-3.6	-2.0	-1.6
dL $\mathrm{L}_{13,47,11 \text { : }}$	140.6	1.56	28.6	41.7	44.9	-3.2	-2.0	-1.2
dL ${ }_{\text {t } 3,48,11}$:	142.2	1.56	30.1	39.3	46.4	-7.1	-2.0	-5.0
dL $\mathrm{L}_{\text {t, 49, } 11}$:	146.9	1.56	27.4	34.5	43.7	-9.2	-2.0	-7.2
dL $\mathrm{L}_{13,51,11}$:	139.1	1.56	28.4	41.9	44.7	-2.8	-2.0	-0.7
dL ${ }_{\text {t3, }, 54,11}$:	140.6	1.56	29.5	43.6	45.8	-2.2	-2.0	-0.2
dL $\mathrm{L}_{3,55,111}$	139.1	1.56	28.5	43.4	44.8	-1.4	-2.0	0.6
dL ${ }_{\text {t }}^{3,56,11}$:	142.2	1.56	26.9	40.3	43.2	-2.9	-2.0	-0.9
dL ${ }_{\text {ti, }, 5,11}$:	143.8	1.56	28.5	41.9	44.8	-3.0	-2.0	-0.9
dL $\mathrm{L}_{13,67,11}$:	142.2	1.56	27.5	45.2	43.8	1.4	-2.0	3.5
dL ${ }_{\text {t } 3,68,11}$:	140.6	1.56	26.7	42.4	43.0	-0.6	-2.0	1.4
dL ${ }_{\text {t }}^{3,72,11:}$	142.2	1.56	28.0	41.9	44.3	-2.5	-2.0	-0.4
dL $\mathrm{L}_{13,73,11:}$	139.1	1.56	28.3	38.5	44.6	-6.1	-2.0	-4.1
$\mathrm{dL}_{\mathrm{t} 3,77,11}$:	139.1	1.56	26.8	37.9	43.1	-5.2	-2.0	-3.2
dL ${ }_{\text {t, }, 83,11}$:	139.1	1.56	28.2	43.8	44.5	-0.7	-2.0	1.3
dL $\mathrm{L}_{\mathrm{t}, 85,11}$:	142.2	1.56	27.8	43.9	44.1	-0.2	-2.0	1.8
dL $\mathrm{L}_{13,86,11}$:	142.2	1.56	27.0	45.0	43.3	1.6	-2.0	3.7
dL $\mathrm{L}_{13,87,11}$:	139.1	1.56	26.9	42.2	43.2	-1.0	-2.0	1.0
dL $\mathrm{L}_{13,89,11 \text { : }}$	139.1	1.56	28.2	40.1	44.5	-4.4	-2.0	-2.3
dL $\mathrm{L}_{13,90,11}$:	140.6	1.56	28.0	42.1	44.3	-2.2	-2.0	-0.2
dL ${ }_{\text {ta, }}^{11,11}$:	140.6	1.56	29.8	39.7	46.1	-6.4	-2.0	-4.3
dL $\mathrm{L}_{13,93,11}$:	139.1	1.56	27.9	39.8	44.2	-4.4	-2.0	-2.4
$\mathrm{dL}_{\mathrm{t}, 9,9,11}$:	140.6	1.56	28.0	41.9	44.3	-2.4	-2.0	-0.4
dL ${ }_{\text {t }}$, 95,11 :	139.1	1.56	28.6	41.2	44.9	-3.7	-2.0	-1.7
dL $\mathrm{L}_{13,98,11}$:	140.6	1.56	29.5	38.3	45.8	-7.6	-2.0	-5.5
dL $\mathrm{L}_{\mathrm{t}, 99,11}$:	142.2	1.56	30.0	38.1	46.3	-8.2	-2.0	-6.2
dL ${ }_{\text {t3,101,11 }}$	139.1	1.56	28.1	40.9	44.4	-3.6	-2.0	-1.6
dL ${ }_{\text {t3,102,11: }}$	140.6	1.56	28.4	40.5	44.7	-4.2	-2.0	-2.2
dL $\mathrm{L}_{3,103,11}$	140.6	1.56	27.9	38.2	44.2	-6.0	-2.0	-4.0
dL ${ }_{\text {t3,104,11 }}$:	139.1	1.56	28.6	40.1	44.9	-4.8	-2.0	-2.7
dL ${ }_{\text {ti,106,11: }}$	140.6	1.56	29.1	41.0	45.4	-4.3	-2.0	-2.3
dLti4, 2,11 :	175.0	1.56	28.1	35.8	44.4	-8.7	-2.0	-6.6
$\mathrm{dL}_{\text {t4,3,11: }}$	175.0	1.56	27.1	40.5	43.4	-2.8	-2.0	-0.8
dLti4,4,11:	175.0	1.56	26.8	39.3	43.1	-3.8	-2.0	-1.8
$\mathrm{dL}_{44,8,11}$:	175.0	1.56	26.5	41.4	42.8	-1.4	-2.0	0.6

Windlectric Inc.
Amherst Island Wind Project
Page 92 of 112
Acoustic Test Report, WTG S29

$\mathrm{dL}_{44,10,11}$:	175.0	1.56	27.5	35.7	43.8	-8.1	-2.0	-6.1
dLt ${ }_{\text {t, } 16,11}$:	175.0	1.56	27.7	39.1	44.0	-4.9	-2.0	-2.9
$\mathrm{dL}_{\text {t4, 18,11: }}$	175.0	1.56	27.5	42.0	43.8	-1.8	-2.0	0.2
dLteta0,11:	175.0	1.56	26.2	36.1	42.5	-6.5	-2.0	-4.5
$\mathrm{dL}_{\text {t4, 21,11: }}$	175.0	1.56	27.9	39.9	44.2	-4.3	-2.0	-2.3
$\mathrm{dL}_{\text {t4, 26,11: }}$	175.0	1.56	28.1	40.1	44.4	-4.3	-2.0	-2.2
$\mathrm{dL}_{\text {t4, 27,11: }}$	175.0	1.56	28.3	39.7	44.6	-4.8	-2.0	-2.8
$\mathrm{dL}_{\text {t4, 33,11: }}$	175.0	1.56	26.4	38.9	42.7	-3.7	-2.0	-1.7
	175.0	1.56	28.3	37.1	44.6	-7.5	-2.0	-5.4
$\mathrm{dL}_{\text {t4, 35,11: }}$	175.0	1.56	26.8	41.7	43.1	-1.4	-2.0	0.6
$\mathrm{dL}_{\text {t4, 37,11: }}$	175.0	1.56	27.8	42.6	44.1	-1.4	-2.0	0.6
$\mathrm{dL}_{\text {t4, 38,11: }}$	175.0	1.56	27.1	39.9	43.4	-3.5	-2.0	-1.5
$\mathrm{dL}_{\text {t4,39,11: }}$	175.0	1.56	28.0	41.0	44.3	-3.3	-2.0	-1.3
dLtit,40,11:	175.0	1.56	29.1	42.0	45.4	-3.4	-2.0	-1.3
$\mathrm{dL}_{\text {t4,41,11: }}$	175.0	1.56	28.2	40.4	44.5	-4.1	-2.0	-2.1
$\mathrm{dL}_{\text {t4,42,11: }}$	175.0	1.56	27.8	38.5	44.1	-5.6	-2.0	-3.5
$\mathrm{dL}_{\text {t4,43,11: }}$	175.0	1.56	27.9	39.7	44.2	-4.5	-2.0	-2.5
$\mathrm{dL}_{\text {t4,44,11: }}$	175.0	1.56	27.1	35.8	43.4	-7.7	-2.0	-5.6
dLtetas,11:	175.0	1.56	28.4	38.6	44.7	-6.1	-2.0	-4.1
$\mathrm{dL}_{\text {t4,46,11: }}$	175.0	1.56	27.8	35.8	44.1	-8.3	-2.0	-6.3
dL ${ }_{\text {t4, 50,11: }}$	175.0	1.56	27.3	40.3	43.6	-3.3	-2.0	-1.3
$\mathrm{dL}_{\text {t4, 52,11: }}$	175.0	1.56	27.9	37.5	44.2	-6.7	-2.0	-4.7
$\mathrm{dL}_{\text {t4, 53,11: }}$	175.0	1.56	27.4	40.6	43.7	-3.2	-2.0	-1.1
$\mathrm{dL}_{\text {t4, 57,11: }}$	175.0	1.56	26.3	40.5	42.6	-2.1	-2.0	-0.1
$\mathrm{dL}_{\text {t4, 58,11: }}$	175.0	1.56	27.6	39.3	43.9	-4.6	-2.0	-2.5
dL t4,60,11:	175.0	1.56	27.2	40.9	43.5	-2.6	-2.0	-0.6
dLti4,61,11:	175.0	1.56	27.2	38.5	43.5	-5.0	-2.0	-2.9
dL $\mathrm{Lt}_{4,62,11}$:	175.0	1.56	28.4	39.8	44.7	-4.9	-2.0	-2.9
$\mathrm{dL}_{\text {t4,63,11: }}$	175.0	1.56	29.4	39.3	45.7	-6.5	-2.0	-4.4
dL ${ }_{\text {t4, } 64,11}$:	175.0	1.56	28.0	40.6	44.3	-3.7	-2.0	-1.6
dLtat,65,11:	175.0	1.56	27.6	38.9	43.9	-5.0	-2.0	-3.0
dLti4,66,11:	175.0	1.56	27.4	38.3	43.7	-5.5	-2.0	-3.4
$\mathrm{dL}_{44,69,11}$:	175.0	1.56	28.0	42.6	44.3	-1.7	-2.0	0.3
$\mathrm{dL}_{\text {t4, } 70,11}$:	175.0	1.56	27.8	38.1	44.1	-6.0	-2.0	-4.0
$\mathrm{dL}_{\text {t4, 71,11: }}$	175.0	1.56	27.5	39.6	43.8	-4.2	-2.0	-2.2
dLti4,74,11:	175.0	1.56	27.8	40.2	44.1	-3.8	-2.0	-1.8
$\mathrm{dL}_{\text {t4,75,11: }}$	175.0	1.56	28.1	41.0	44.4	-3.4	-2.0	-1.4
dL ${ }_{\text {t4,76,11: }}$	175.0	1.56	28.1	41.5	44.4	-3.0	-2.0	-0.9
dL $\mathrm{ta}_{4,78,11:}$	175.0	1.56	27.0	40.0	43.3	-3.3	-2.0	-1.2
$\mathrm{dL}_{44,79,11}$:	175.0	1.56	28.3	39.9	44.6	-4.7	-2.0	-2.7
dL $\mathrm{Lt}_{4,80,11}$:	175.0	1.56	27.6	34.2	43.9	-9.7	-2.0	-7.7
$\mathrm{dL}_{44,81,11}$:	175.0	1.56	27.6	35.7	43.9	-8.2	-2.0	-6.2
dLtitere,11:	175.0	1.56	29.0	36.9	45.3	-8.4	-2.0	-6.3
dLtite8,11:	175.0	1.56	27.5	41.7	43.8	-2.1	-2.0	0.0
dL $\mathrm{ta,88,11}$	175.0	1.56	27.9	39.2	44.2	-5.0	-2.0	-3.0
$\mathrm{dL}_{\text {t4,92,11: }}$	175.0	1.56	28.9	36.8	45.2	-8.4	-2.0	-6.4
$\mathrm{dL}_{\text {t4,96,11: }}$	175.0	1.56	30.8	40.4	47.1	-6.8	-2.0	-4.7
dL ${ }_{\text {t4, } 97,11:}$	175.0	1.56	29.1	38.6	45.4	-6.8	-2.0	-4.7
$\mathrm{dL}_{44,100,11}$:	175.0	1.56	28.7	37.7	45.0	-7.3	-2.0	-5.3
$\mathrm{dL}_{\text {t5, 3,11: }}$	232.8	1.56	26.9	35.2	43.3	-8.1	-2.1	-6.1
dLt5,4,11:	232.8	1.56	26.4	34.3	42.8	-8.5	-2.1	-6.5
dL ${ }_{\text {t5,6,11: }}$	232.8	1.56	26.2	32.3	42.6	-10.4	-2.1	-8.3
dLt5,7,11:	232.8	1.56	26.0	32.2	42.5	-10.2	-2.1	-8.2
dL ${ }_{\text {t5, }, 8,11}$:	232.8	1.56	27.0	35.2	43.5	-8.3	-2.1	-6.2

2

Windlectric Inc.
Page 93 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\text {t5, } 10,11}$:	232.8	1.56	26.7	33.5	43.1	-9.6	-2.1	-7.5
dLt5,11,11:	232.8	1.56	27.1	33.7	43.5	-9.8	-2.1	-7.7
$\mathrm{dL}_{\text {t5,16,11: }}$	232.8	1.56	26.8	35.6	43.2	-7.6	-2.1	-5.5
dL t5, 23,11:	232.8	1.56	27.9	34.1	44.4	-10.3	-2.1	-8.2
$\mathrm{dL}_{\text {t5,24,11: }}$	232.8	1.56	29.3	36.6	45.7	-9.2	-2.1	-7.1
$\mathrm{dL}_{\text {t5,26,11: }}$	232.8	1.56	27.5	35.3	43.9	-8.6	-2.1	-6.5
$\mathrm{dL}_{\text {t5, 27,11: }}$	232.8	1.56	27.9	33.9	44.3	-10.4	-2.1	-8.3
$\mathrm{dL}_{\text {t5,28,11: }}$	232.8	1.56	26.1	32.1	42.6	-10.4	-2.1	-8.4
dLt5,29,11:	232.8	1.56	26.8	34.2	43.3	-9.1	-2.1	-7.0
$\mathrm{dL}_{\text {t5,31,11: }}$	232.8	1.56	26.4	33.6	42.9	-9.3	-2.1	-7.2
$\mathrm{dL}_{\text {t5,35,11: }}$	232.8	1.56	26.6	33.0	43.1	-10.1	-2.1	-8.0
dL ${ }_{\text {t5,37,11: }}$	232.8	1.56	27.5	35.9	43.9	-8.0	-2.1	-6.0
$\mathrm{dL}_{\text {t5,41,11: }}$	232.8	1.56	27.5	34.2	44.0	-9.8	-2.1	-7.8
dL t5,42,11:	232.8	1.56	27.2	33.3	43.7	-10.4	-2.1	-8.3
$\mathrm{dL}_{\text {t5,43,11: }}$	232.8	1.56	27.2	34.8	43.6	-8.8	-2.1	-6.8
$\mathrm{dL}_{\text {t5,45,11: }}$	232.8	1.56	27.5	34.1	43.9	-9.9	-2.1	-7.8
dL ${ }_{\text {t5,49,11: }}$	232.8	1.56	27.2	33.7	43.7	-10.0	-2.1	-7.9
$\mathrm{dL}_{\text {t5,52,11: }}$	232.8	1.56	27.6	35.2	44.0	-8.8	-2.1	-6.7
dL ${ }_{\text {t5,54,11: }}$	232.8	1.56	29.7	36.9	46.2	-9.2	-2.1	-7.2
$\mathrm{dL}_{\text {t5,55,11: }}$	232.8	1.56	28.4	34.5	44.8	-10.3	-2.1	-8.3
dLt5,56,11:	232.8	1.56	26.9	35.4	43.4	-7.9	-2.1	-5.9
dL ${ }_{\text {t5,57,11: }}$	232.8	1.56	26.5	34.3	42.9	-8.6	-2.1	-6.5
dL ${ }_{\text {t5,58,11: }}$	232.8	1.56	27.8	34.3	44.3	-10.0	-2.1	-7.9
dL ${ }_{\text {t5,59,11: }}$	232.8	1.56	28.8	36.0	45.2	-9.2	-2.1	-7.2
dL ${ }_{\text {t5,63,11: }}$	232.8	1.56	28.4	37.5	44.8	-7.3	-2.1	-5.3
dLt5,64,11:	232.8	1.56	27.7	35.1	44.2	-9.1	-2.1	-7.0
dL t5,65,11:	232.8	1.56	27.0	33.5	43.4	-9.9	-2.1	-7.8
$\mathrm{dL}_{\text {t5,67,11: }}$	232.8	1.56	27.9	35.4	44.3	-8.9	-2.1	-6.9
dL ${ }_{\text {t5,68,11 }}$:	232.8	1.56	27.2	35.0	43.7	-8.7	-2.1	-6.7
dL ${ }_{\text {t5,70,11 }}$:	232.8	1.56	27.6	34.0	44.0	-10.0	-2.1	-7.9
dL t5,71,11:	232.8	1.56	27.9	35.5	44.3	-8.9	-2.1	-6.8
dLt5,72,11:	232.8	1.56	28.4	35.3	44.9	-9.5	-2.1	-7.5
dL ${ }_{\text {t5,78,11 }}$:	232.8	1.56	27.6	34.0	44.1	-10.1	-2.1	-8.0
$\mathrm{dL}_{\text {t5,81,11: }}$	232.8	1.56	27.1	34.5	43.6	-9.0	-2.1	-7.0
dL ${ }_{\text {t5,82,11: }}$	232.8	1.56	28.2	34.4	44.6	-10.2	-2.1	-8.2
dL t5,83,11:	232.8	1.56	28.0	35.2	44.4	-9.2	-2.1	-7.2
$\mathrm{dL}_{\text {t5,85,11: }}$	232.8	1.56	28.1	38.0	44.5	-6.4	-2.1	-4.4
dLt5,95,11:	232.8	1.56	29.1	35.2	45.6	-10.4	-2.1	-8.3
dL ${ }_{\text {t5,97,11: }}$	232.8	1.56	29.8	37.3	46.3	-8.9	-2.1	-6.9
$\mathrm{dL}_{\text {t5, 104,11: }}$	232.8	1.56	27.3	34.8	43.8	-8.9	-2.1	-6.9
dL $\mathrm{L}_{\mathrm{t}, 4,41}$:	307.8	1.56	26.0	33.1	42.6	-9.5	-2.1	-7.4
dL $\mathrm{t}_{\mathrm{t}, 6,11}$:	307.8	1.56	25.5	34.2	42.1	-7.9	-2.1	-5.8
dLt ${ }_{\text {t } 6,9,11}$	309.4	1.56	27.3	33.9	43.8	-10.0	-2.1	-7.9
dL t6,12,11:	307.8	1.56	25.9	41.0	42.4	-1.4	-2.1	0.7
$\mathrm{dL}_{\text {t6, } 13,11}$:	307.8	1.56	26.7	34.8	43.2	-8.4	-2.1	-6.3
$\mathrm{dL}_{\text {t6,14,11: }}$	309.4	1.56	26.3	34.7	42.9	-8.2	-2.1	-6.1
$\mathrm{dL}_{6,16,11}$:	309.4	1.56	25.7	36.3	42.3	-5.9	-2.1	-3.8
dL t6,17,11:	307.8	1.56	26.2	39.7	42.7	-3.1	-2.1	-0.9
$\mathrm{dL}_{6,18,11}$:	307.8	1.56	26.2	32.9	42.7	-9.8	-2.1	-7.7
$\mathrm{dL}_{66,20,11}$:	307.8	1.56	26.5	36.1	43.0	-6.9	-2.1	-4.8
dL t6,51,11:	325.0	1.56	27.2	35.9	43.8	-7.9	-2.1	-5.7
$\mathrm{dL}_{66,57,11}$:	325.0	1.56	25.1	31.2	41.7	-10.6	-2.1	-8.4
dL t6,75,11:	325.0	1.56	26.1	35.1	42.7	-7.6	-2.1	-5.5
dL $\mathrm{t6,76,11}$	325.0	1.56	26.4	34.7	43.0	-8.3	-2.1	-6.2

Windlectric Inc.
Page 94 of 112
Amherst Island Wind Project
Acoustic Test Report, WTG S29

$\mathrm{dL}_{6,77,11}$:	325.0	1.56	26.7	36.9	43.3	-6.4	-2.1	-4.3
dL t6,78,11:	325.0	1.56	26.7	35.7	43.3	-7.6	-2.1	-5.5
dL t6,82,11:	325.0	1.56	26.8	32.8	43.3	-10.6	-2.1	-8.4
dLt6,92,11:	323.5	1.56	26.6	34.3	43.2	-8.9	-2.1	-6.7
$\mathrm{dL}_{\text {t6,94,11: }}$	325.0	1.56	27.2	34.4	43.8	-9.3	-2.1	-7.2
$\mathrm{dL}_{\text {t6,97,11: }}$	325.0	1.56	29.0	35.6	45.6	-10.0	-2.1	-7.9
$\mathrm{dL}_{\text {t6, 102,11: }}$	325.0	1.56	27.1	37.6	43.7	-6.1	-2.1	-3.9
$\mathrm{dL}_{6,103,11}$:	325.0	1.56	27.0	35.3	43.6	-8.3	-2.1	-6.1
dLt7,14,11:	7633.3	1.56	-16.3	-9.9	12.7	-22.6	-5.0	-17.6
$\mathrm{dL}_{\text {t7,67,11: }}$	7648.9	1.56	-16.3	-8.9	12.7	-21.6	-5.0	-16.6
$\mathrm{dL}_{18,86,11}$:	7998.9	1.56	-16.4	-10.3	12.9	-23.3	-5.0	-18.3
$\mathrm{dL}_{18,97,11}$:	8058.3	1.56	-17.2	-11.1	12.1	-23.2	-5.0	-18.2

BIN 11: Tonal components determined - Compact

Spectrum	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\mathrm{ta}, \mathrm{j}, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}, \mathrm{k}}$
\#\#	[Hz]	[dB]										
1	70.3	-2.8	---	---	142.2	-1.3	---	---	---	---	---	---
2	71.9	0.4	---	---	---	---	175.0	-8.7	---	---	---	---
3	68.8	-4.7	---	---	---	---	175.0	-2.8	232.8	-8.1	---	---
4	70.3	-6.2	---	---	---	---	175.0	-3.8	232.8	-8.5	307.8	-9.5
5	70.3	-8.8	---	---	142.2	-7.5	---	---	---	---	---	---
6	70.3	-2.5	---	---	140.6	-1.9	---	---	232.8	-10.4	307.8	-7.9
7	70.3	-1.6	---	---	140.6	-1.4	---	---	232.8	-10.2	---	---
8	68.8	-1.3	---	---	---	---	175.0	-1.4	232.8	-8.3	---	---
9	82.8	-6.1	82.8	-6.1	139.1	-7.5	---	---	---	---	309.4	-10.0
10	70.3	-7.6	---	---	---	---	175.0	-8.1	232.8	-9.6	---	---
11	70.3	-8.6	---	---	139.1	-1.9	---	---	232.8	-9.8	---	---
12	71.9	-3.2	---	---	142.2	-1.6	---	---	---	---	307.8	-1.4
13	---	---	---	---	139.1	-5.4	---	---	---	---	307.8	-8.4
14	68.8	-8.0	---	---	139.1	-7.2	---	---	---	---	309.4	-8.2
15	68.8	-4.7	---	---	139.1	-3.2	---	---	---	---	---	---
16	70.3	-5.3	---	---	---	---	175.0	-4.9	232.8	-7.6	309.4	-5.9
17	70.3	-9.8	---	---	139.1	-7.6	---	---	---	---	307.8	-3.1
18	68.8	-6.0	---	---	---	---	175.0	-1.8	---	---	307.8	-9.8
19	68.8	-2.6	---	---	139.1	-6.6	---	---	---	---	---	---
20	71.9	-2.7	---	---	---	---	175.0	-6.5	---	---	307.8	-6.9
21	68.8	-9.2	---	---	---	---	175.0	-4.3	---	---	---	---
22	70.3	-5.4	---	---	140.6	-3.2	---	--	---	---	---	---
23	71.9	-1.8	---	---	142.2	1.4	---	---	232.8	-10.3	---	---
24	70.3	0.2	---	---	142.2	-3.7	---	---	232.8	-9.2	---	---
25	71.9	-2.6	---	---	142.2	-4.5	---	---	---	---	---	---
26	71.9	-5.8	---	---	---	---	175.0	-4.3	232.8	-8.6	---	---
27	71.9	-3.4	---	---	---	---	175.0	-4.8	232.8	-10.4	---	---
28	68.8	-8.6	---	---	139.1	0.9	---	---	232.8	-10.4	---	---
29	68.8	-4.9	---	---	137.5	-5.8	---	---	232.8	-9.1	---	---
30	71.9	-2.4	---	---	143.8	-8.5	---	---	---	---	---	---
31	68.8	-3.5	---	---	139.1	-2.4	---	---	232.8	-9.3	---	---
32	71.9	-5.6	---	---	140.6	-6.8	---	---	---	---	---	---
33	---	---	98.4	-0.3	---	---	175.0	-3.7	---	---	---	---
34	---	---	89.1	-9.5	---	---	175.0	-7.5	---	---	---	---
35	70.3	-7.7	---	---	---	---	175.0	-1.4	232.8	-10.1	---	---
36	70.3	-5.6	---	---	140.6	-3.6	---	---	---	---	---	---
37	68.8	-3.9	---	---	---	---	175.0	-1.4	232.8	-8.0	---	---
38	70.3	-2.6	---	---	---	---	175.0	-3.5	---	---	---	---

Windlectric Inc.
Amherst Island Wind Project
Acoustic Test Report, WTG S29

Page 95 of 112
Report 01800287.007
January 9, 2019

39	68.8	-6.3	---	---	---	---	175.0	-3.3	---	---	---	---
40	68.8	-5.4	---	---	---	---	175.0	-3.4	---	---	---	---
41	70.3	-6.5	--	---	---	---	175.0	-4.1	232.8	-9.8	---	---
42	71.9	-5.6	---	---	---	---	175.0	-5.6	232.8	-10.4	---	---
43	68.8	-5.2	---	---	---	---	175.0	-4.5	232.8	-8.8	---	---
44	68.8	-6.5	---	---	---	---	175.0	-7.7	---	---	---	---
45	71.9	-3.3	---	---	---	---	175.0	-6.1	232.8	-9.9	---	---
46	68.8	-4.4	---	---	---	---	175.0	-8.3	---	---	---	---
47	70.3	-9.4	---	---	140.6	-3.2	---	---	---	---	---	---
48	71.9	-5.9	---	---	142.2	-7.1	---	---	---	---	---	---
49	71.9	-2.7	---	---	146.9	-9.2	---	---	232.8	-10.0	---	---
50	68.8	-3.4	--	---	---	---	175.0	-3.3	---	---	---	---
51	68.8	-6.1	---	---	139.1	-2.8	---	---	---	---	325.0	-7.9
52	75.0	-2.4	---	---	---	---	175.0	-6.7	232.8	-8.8	---	---
53	68.8	0.0	---	---	---	---	175.0	-3.2	---	---	---	---
54	70.3	-6.8	---	---	140.6	-2.2	---	---	232.8	-9.2	---	---
55	---	---	---	---	139.1	-1.4	---	---	232.8	-10.3	---	---
56	70.3	-4.9	---	---	142.2	-2.9	---	---	232.8	-7.9	---	---
57	68.8	-4.0	---	---	---	---	175.0	-2.1	232.8	-8.6	325.0	-10.6
58	68.8	-7.1	---	---	---	---	175.0	-4.6	232.8	-10.0	---	---
59	73.4	-3.3	---	---	143.8	-3.0	---	---	232.8	-9.2	---	---
60	68.8	-2.1	---	---	---	---	175.0	-2.6	---	---	---	---
61	68.8	-6.2	---	---	---	---	175.0	-5.0	---	---	---	---
62	68.8	-5.7	---	---	---	--	175.0	-4.9	---	---	---	---
63	---	---	---	---	---	---	175.0	-6.5	232.8	-7.3	---	---
64	68.8	-1.2	---	---	---	---	175.0	-3.7	232.8	-9.1	---	---
65	68.8	-3.4	---	---	---	---	175.0	-5.0	232.8	-9.9	---	---
66	70.3	-8.2	---	---	---	---	175.0	-5.5	---	---	---	---
67	71.9	-2.9	---	---	142.2	1.4	---	---	232.8	-8.9	---	---
68	70.3	0.0	---	--	140.6	-0.6	---	---	232.8	-8.7	---	--
69	68.8	-2.6	---	---	---	---	175.0	-1.7	---	---	---	---
70	71.9	-5.3	---	---	---	---	175.0	-6.0	232.8	-10.0	---	---
71	---	---	106.3	-0.9	---	---	175.0	-4.2	232.8	-8.9	---	---
72	---	---	93.8	4.1	142.2	-2.5	---	---	232.8	-9.5	---	---
73	71.9	-10.2	---	---	139.1	-6.1	---	---	---	---	---	---
74	71.9	-4.3	---	---	--	---	175.0	-3.8	---	---	---	---
75	68.8	-7.9	---	---	---	---	175.0	-3.4	---	---	325.0	-7.6
76	68.8	-4.4	---	---	---	---	175.0	-3.0	---	---	325.0	-8.3
77	68.8	-4.2	---	---	139.1	-5.2	---	---	---	---	325.0	-6.4
78	73.4	-4.9	---	---	---	---	175.0	-3.3	232.8	-10.1	325.0	-7.6
79	71.9	-7.1	---	---	---	---	175.0	-4.7	---	---	---	---
80	71.9	-2.8	---	---	---	---	175.0	-9.7	---	---	---	---
81	71.9	-9.4	---	---	---	---	175.0	-8.2	232.8	-9.0	---	---
82	68.8	-10.1	---	---	---	---	175.0	-8.4	232.8	-10.2	325.0	-10.6
83	70.3	-8.2	---	---	139.1	-0.7	---	---	232.8	-9.2	---	---
84	71.9	-2.7	---	---	---	---	175.0	-2.1	---	---	---	---
85	71.9	-3.9	---	---	142.2	-0.2	---	---	232.8	-6.4	---	---
86	71.9	-2.5	---	---	142.2	1.6	---	---	---	---	---	---
87	68.8	-0.6	---	---	139.1	-1.0	---	---	---	---	---	---
88	70.3	-4.7	---	---	---	---	175.0	-5.0	---	---	---	---
89	68.8	-6.8	---	---	139.1	-4.4	---	---	---	---	---	---
90	76.6	-8.4	---	---	140.6	-2.2	---	---	---	---	---	---
91	70.3	-8.1	---	---	140.6	-6.4	---	---	---	---	---	---
92	75.0	-4.6	---	---	---	---	175.0	-8.4	---	---	323.5	-8.9

NOISE

93	68.8	-6.1	---	---	139.1	-4.4	---	---	---	---	---	---
94	70.3	-7.9	---	---	140.6	-2.4	---	---	---	---	325.0	-9.3
95	70.3	-7.5	---	---	139.1	-3.7	---	---	232.8	-10.4	---	---
96	---	---	---	---	---	---	175.0	-6.8	---	---	---	---
97	70.3	-7.3	---	---	---	---	175.0	-6.8	232.8	-8.9	325.0	-10.0
98	70.3	-9.1	---	---	140.6	-7.6	---	---	---	---	---	---
99	71.9	-7.9	---	---	142.2	-8.2	---	---	---	---	---	---
100	68.8	-4.9	---	---	---	---	175.0	-7.3	---	---	---	---
101	68.8	-5.1	---	---	139.1	-3.6	---	---	---	---	---	---
102	70.3	-5.4	---	---	140.6	-4.2	---	---	---	---	325.0	-6.1
103	70.3	-7.5	---	---	140.6	-6.0	---	---	---	---	325.0	-8.3
104	68.8	-7.1	---	---	139.1	-4.8	---	---	232.8	-8.9	---	---
105	70.3	-9.3	---	---	---	---	---	---	---	---	---	---
106	70.3	-5.1	---	---	140.6	-4.3	---	---	---	---	---	---
$\mathrm{ft}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL}_{\mathrm{k}}[\mathrm{dB}]$	70.6	-4.7	98.2	-11.8	141.4	-5.8	175.0	-7.1	232.8	-11.9	309.8	-12.4
$\mathrm{L}_{\mathrm{a}}[\mathrm{dB}]$		-2.0		-2.0		-2.0		-2.0		-2.1		-2.1
dLa,k[dB]		-2.7		-9.8		-3.8		-5.1		-9.8		-10.3
$\mathrm{K}_{\text {to }}$ [dB]		0		0		0		0		0		0

Windlectric Inc.
Page 98 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

BIN 11.5: Tonal components determined								
	Frequency	delta f	$\mathrm{L}_{\text {pr,avg, }, \mathrm{k}}$	$\mathrm{Lppt,j}, \mathrm{k}$	Lpn,j,k	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\text {aj, }, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
$\mathrm{dL}_{\text {ti, } 1,11.5}$:	70.3	1.56	22.0	36.4	38.3	-1.9	-2.0	0.1
$\mathrm{dL}_{\text {t1,2,11.5: }}$	73.4	1.56	22.9	39.0	39.2	-0.2	-2.0	1.8
$\mathrm{dL}_{11,3,11.5}$:	73.4	1.56	24.5	36.8	40.8	-4.0	-2.0	-2.0
$\mathrm{dL}_{\mathrm{t} 1,4,11,5}$:	75.0	1.56	23.0	38.6	39.3	-0.7	-2.0	1.3
$\mathrm{dL}_{\text {t1,5,11.5: }}$	71.9	1.56	23.1	38.4	39.4	-1.0	-2.0	1.0
$\mathrm{dL}_{11,6,11.5}$	84.4	1.56	24.0	37.0	40.3	-3.3	-2.0	-1.3
$\mathrm{dL}_{\mathrm{t} 1,7,11,5}$	82.8	1.56	28.1	34.3	44.4	-10.0	-2.0	-8.0
$\mathrm{dL}_{\text {t1,8,11.5: }}$	71.9	1.56	25.8	36.2	42.1	-5.9	-2.0	-3.9
$\mathrm{dL}_{\text {t1,9,11.5: }}$	71.9	1.56	26.6	34.1	42.9	-8.8	-2.0	-6.8
$\mathrm{dL}_{\text {t1, } 10,11.5}$:	70.3	1.56	23.2	36.0	39.5	-3.4	-2.0	-1.4
dLti,11,11.5:	71.9	1.56	25.4	38.3	41.7	-3.4	-2.0	-1.4
$\mathrm{dL}_{\mathrm{t}_{1,13,11.5} \text { : }}$	70.3	1.56	24.0	34.7	40.3	-5.6	-2.0	-3.6
$\mathrm{dL}_{\mathrm{t}_{1,14,11,5} \text { : }}$	71.9	1.56	24.6	31.0	40.9	-9.9	-2.0	-7.9
$\mathrm{dL}_{\mathrm{t}_{1}, 15,11,5}$	73.4	1.56	25.2	36.9	41.5	-4.6	-2.0	-2.6
$\mathrm{dL}_{\mathrm{t}_{1,16,11,5}}$	71.9	1.56	26.2	32.2	42.5	-10.3	-2.0	-8.3
dLti,17,11.5:	71.9	1.56	24.8	34.8	41.1	-6.3	-2.0	-4.3
$\mathrm{dL}_{\mathrm{t}_{1}, 18,11,5}$	71.9	1.56	25.9	33.6	42.2	-8.5	-2.0	-6.5
dLti,20,11.5:	75.0	1.56	25.0	35.8	41.3	-5.5	-2.0	-3.5
$\mathrm{dL}_{\text {t1, 21,11.5: }}$	71.9	1.56	25.8	36.0	42.1	-6.1	-2.0	-4.1
$\mathrm{dL}_{11,22,11.5}$	71.9	1.56	24.2	36.1	40.5	-4.4	-2.0	-2.4
$\mathrm{dL}_{\text {t1, 23,11.5: }}$	71.9	1.56	23.4	36.7	39.7	-3.0	-2.0	-1.0
$\mathrm{dL}_{\text {t1, 24,11.5: }}$	73.4	1.56	24.8	37.5	41.1	-3.6	-2.0	-1.6
dLti,26,11.5:	71.9	1.56	23.4	39.0	39.7	-0.7	-2.0	1.3
dL ${ }_{\text {t1, 27,11.5: }}$	70.3	1.56	23.1	36.7	39.4	-2.7	-2.0	-0.7
$\mathrm{dL}_{\text {t1, 28,11.5: }}$	68.8	1.56	24.3	35.8	40.6	-4.7	-2.0	-2.7
$\mathrm{dL}_{\mathrm{t}_{1,29,11.5} \text { : }}$	75.0	1.56	25.4	35.5	41.7	-6.2	-2.0	-4.2
$\mathrm{dL}_{\text {t1,30,11.5: }}$	73.4	1.56	23.9	36.9	40.2	-3.3	-2.0	-1.3
dL ${ }_{\text {t1,31,11.5: }}$	71.9	1.56	25.3	33.9	41.6	-7.7	-2.0	-5.7
dLti,34,11.5:	71.9	1.56	25.0	34.9	41.3	-6.4	-2.0	-4.4
$\mathrm{dL}_{\text {t1,35,11.5: }}$	71.9	1.56	24.8	35.4	41.1	-5.7	-2.0	-3.7
$\mathrm{dL}_{\text {t1,36,11.5: }}$	70.3	1.56	24.2	33.5	40.5	-7.0	-2.0	-5.0
$\mathrm{dL}_{\text {t1,37,11.5: }}$	73.4	1.56	26.2	36.8	42.5	-5.7	-2.0	-3.7
dLti,39,11.5:	71.9	1.56	25.4	37.1	41.7	-4.7	-2.0	-2.7
$\mathrm{dL}_{\text {t1,41,11.5: }}$	71.9	1.56	25.3	33.5	41.6	-8.1	-2.0	-6.1
dLti,42,11.5:	68.8	1.56	22.8	34.2	39.1	-4.9	-2.0	-2.9
dL ${ }_{\text {t1,44,11.5: }}$	87.5	1.56	28.3	36.9	44.6	-7.7	-2.0	-5.7
$\mathrm{dL}_{11,45,11.5}$	85.9	1.56	23.3	40.2	39.6	0.6	-2.0	2.6
$\mathrm{dL}_{11,46,11.5}$	71.9	1.56	25.9	37.2	42.2	-5.0	-2.0	-3.0
$\mathrm{dL}_{11,47,11.5}$	75.0	1.56	26.2	33.1	42.5	-9.5	-2.0	-7.5
$\mathrm{dL}_{11,48,11.5}$	71.9	1.56	26.1	34.2	42.4	-8.2	-2.0	-6.2
dL ${ }_{\text {t1,49,11.5: }}$	73.4	1.56	24.4	36.5	40.7	-4.2	-2.0	-2.2
$\mathrm{dL}_{\text {t1, 50,11.5: }}$	71.9	1.56	22.4	33.7	38.7	-5.0	-2.0	-3.0
$\mathrm{dL}_{\text {t1, 51,11.5: }}$	71.9	1.56	27.0	36.7	43.3	-6.5	-2.0	-4.5
$\mathrm{dL}_{\text {t1, 52,11.5: }}$	73.4	1.56	26.7	34.5	43.0	-8.5	-2.0	-6.5
dLti,53,11,5:	71.9	1.56	25.5	37.8	41.8	-4.0	-2.0	-2.0
$\mathrm{dL}_{\text {t1, 54,11.5: }}$	71.9	1.56	26.8	38.3	43.1	-4.7	-2.0	-2.7
$\mathrm{dL}_{11,55,11.5}$	71.9	1.56	25.4	35.2	41.7	-6.5	-2.0	-4.5
dLte,12,11.5:	115.6	1.56	23.9	33.7	40.2	-6.5	-2.0	-4.5
dL ${ }_{\text {t2, 25,11.5: }}$	106.3	1.56	28.8	36.3	45.1	-8.8	-2.0	-6.8
dLita ${ }^{\text {di,11.5: }}$	101.6	1.56	28.7	38.2	45.0	-6.8	-2.0	-4.8
$\mathrm{dL}_{\mathrm{t}, 1,11.5}$:	142.2	1.56	25.5	37.9	41.8	-3.9	-2.0	-1.9

ACOUSTICS

Windlectric Inc.
Page 99 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

dL ${ }_{\text {t3,2,11.5: }}$	145.3	1.56	26.8	35.4	43.1	-7.8	-2.0	-5.8
dLit3,3,11.5:	142.2	1.56	28.2	44.4	44.5	-0.1	-2.0	1.9
dL ${ }_{\text {t3, }, 111.5}$:	142.2	1.56	28.9	39.7	45.2	-5.5	-2.0	-3.5
dLt3,9,11.5:	142.2	1.56	28.4	42.3	44.7	-2.4	-2.0	-0.4
$\mathrm{dL}_{\text {[3,11,11.5: }}$	143.8	1.56	28.1	40.4	44.4	-4.0	-2.0	-1.9
$\mathrm{dL}_{\text {+3,12,11.5: }}$	142.2	1.56	26.9	40.7	43.2	-2.5	-2.0	-0.5
$\mathrm{dL}_{\text {ti,13,11.5: }}$	140.6	1.56	27.3	42.8	43.6	-0.8	-2.0	1.2
$\mathrm{dL}_{\text {3, 14,11.5: }}$	142.2	1.56	27.3	43.1	43.6	-0.5	-2.0	1.5
dL ${ }_{\text {L3,23,11.5: }}$	142.2	1.56	27.0	39.3	43.3	-4.1	-2.0	-2.1
$\mathrm{dL}_{\text {L3,27,11.5: }}$	142.2	1.56	27.9	43.6	44.2	-0.7	-2.0	1.4
dL ${ }_{\text {ti,30,11,5: }}$	148.4	1.56	26.9	34.7	43.2	-8.5	-2.0	-6.5
$\mathrm{dL}_{\text {t3,32,11.5: }}$	142.2	1.56	28.4	41.5	44.7	-3.2	-2.0	-1.2
$\mathrm{dL}_{\text {ti,33,11.5: }}$	140.6	1.56	29.3	35.6	45.6	-10.0	-2.0	-7.9
dLix,35,11.5:	142.2	1.56	27.6	41.4	43.9	-2.5	-2.0	-0.5
$\mathrm{dL}_{13,36,11.5}$	140.6	1.56	27.2	40.0	43.5	-3.4	-2.0	-1.4
dL ${ }_{\text {ti,39,11.5: }}$	142.2	1.56	27.8	42.5	44.1	-1.6	-2.0	0.4
$\mathrm{dL}_{\text {t, 41,11.5: }}$	142.2	1.56	27.3	35.2	43.6	-8.5	-2.0	-6.4
$\mathrm{dL}_{\text {[3,45,11.5: }}$	142.2	1.56	26.6	38.5	42.9	-4.4	-2.0	-2.4
dLix,55,11.5:	142.2	1.56	28.3	42.9	44.6	-1.7	-2.0	0.3
dL $\mathrm{ta,4,11.5}$	175.0	1.56	27.3	38.3	43.6	-5.3	-2.0	-3.3
dLti4,5,11.5:	175.0	1.56	27.0	38.7	43.3	-4.6	-2.0	-2.6
dL $\mathrm{d}_{44,6,11.5}$:	175.0	1.56	26.9	39.5	43.2	-3.7	-2.0	-1.7
$\mathrm{dL}_{44,7,11.5}$:	175.0	1.56	28.5	34.9	44.8	-9.9	-2.0	-7.8
$\mathrm{dL}_{44,10,11.5}$	175.0	1.56	27.0	37.5	43.3	-5.8	-2.0	-3.7
$\mathrm{dL}_{\text {t4,16,11.5: }}$	175.0	1.56	28.9	39.4	45.2	-5.8	-2.0	-3.8
dLta,17,11.5:	175.0	1.56	28.7	38.2	45.0	-6.8	-2.0	-4.8
dLt4,18,11.5:	175.0	1.56	29.2	38.4	45.5	-7.1	-2.0	-5.0
dL ${ }_{\text {t4, 19,11.5: }}$	175.0	1.56	28.8	35.6	45.1	-9.6	-2.0	-7.5
dL ${ }_{\text {t4, } 20,11.5}$:	175.0	1.56	27.6	36.9	43.9	-7.1	-2.0	-5.0
$\mathrm{dL}_{44,21,11.5}$	175.0	1.56	29.0	35.6	45.3	-9.8	-2.0	-7.7
dLta, 22,11.5:	175.0	1.56	28.6	39.8	44.9	-5.1	-2.0	-3.1
dLt4, 24,11.5:	175.0	1.56	28.1	39.0	44.4	-5.5	-2.0	-3.4
$\mathrm{dL}_{44,25,11.5}$	175.0	1.56	29.0	38.5	45.3	-6.8	-2.0	-4.8
$\mathrm{dL}_{\text {t4, 26,11.5: }}$	175.0	1.56	27.4	41.8	43.7	-1.9	-2.0	0.1
dL ${ }_{\text {t4, 28,11.5: }}$	175.0	1.56	28.0	37.7	44.3	-6.7	-2.0	-4.6
dLt4, 29,11.5:	175.0	1.56	28.5	40.1	44.8	-4.7	-2.0	-2.7
dL ${ }_{\text {t4,34,11,5: }}$	175.0	1.56	28.1	35.9	44.4	-8.5	-2.0	-6.5
dLta,37,11.5:	175.0	1.56	29.0	39.1	45.3	-6.1	-2.0	-4.1
dLti4,40,11.5:	175.0	1.56	28.6	40.5	44.9	-4.4	-2.0	-2.4
$\mathrm{dL}_{\text {t4,46,11.5: }}$	175.0	1.56	28.7	39.3	45.0	-5.6	-2.0	-3.6
$\mathrm{dL}_{44,49,11.5}$	175.0	1.56	28.1	40.1	44.4	-4.3	-2.0	-2.3
$\mathrm{dL}_{\text {t4,50,11.5: }}$	175.0	1.56	26.4	38.9	42.7	-3.9	-2.0	-1.8
dLt4,53,11.5:	175.0	1.56	28.7	34.7	45.0	-10.2	-2.0	-8.2
dLt5,1,11.5:	232.8	1.56	26.2	34.0	42.6	-8.6	-2.1	-6.5
$\mathrm{dL}_{\text {t5,3,11.5: }}$	232.8	1.56	28.7	37.0	45.1	-8.1	-2.1	-6.1
$\mathrm{dL}_{\text {t5,5,11.5: }}$	232.8	1.56	26.9	35.4	43.4	-8.0	-2.1	-5.9
$\mathrm{dL}_{\text {t5,6,11.5: }}$	232.8	1.56	26.7	34.1	43.1	-9.1	-2.1	-7.0
dLt5,9,11.5:	232.8	1.56	27.7	34.4	44.1	-9.7	-2.1	-7.7
$\mathrm{dL}_{\text {t5, 10,11.5: }}$	232.8	1.56	26.6	33.9	43.1	-9.1	-2.1	-7.1
$\mathrm{dL}_{\text {t5,11,11.5: }}$	232.8	1.56	26.9	34.1	43.3	-9.3	-2.1	-7.2
dLt5,12,11.5:	232.8	1.56	26.8	34.1	43.2	-9.1	-2.1	-7.0
$\mathrm{dL}_{\text {t5,13,11.5: }}$	232.8	1.56	26.8	33.5	43.2	-9.8	-2.1	-7.7
dLt5,14,11.5:	232.8	1.56	26.9	33.2	43.3	-10.1	-2.1	-8.0
$\mathrm{dL}_{\text {t5,16,11.5: }}$	232.8	1.56	27.7	36.0	44.1	-8.1	-2.1	-6.1

Windlectric Inc.
Page 100 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\text {t5,24,11.5: }}$	232.8	1.56	28.1	35.2	44.5	-9.3	-2.1	-7.2
dL ${ }_{\text {t5, 25,11.5: }}$	232.8	1.56	28.5	36.4	45.0	-8.6	-2.1	-6.6
$\mathrm{dL}_{\text {t5,26,11.5: }}$	232.8	1.56	27.0	34.1	43.4	-9.4	-2.1	-7.3
dLt5,27,11.5:	232.8	1.56	27.6	35.3	44.0	-8.8	-2.1	-6.7
dL ${ }_{\text {t5,34,11.5: }}$	232.8	1.56	28.0	35.3	44.4	-9.1	-2.1	-7.1
$\mathrm{dL}_{\text {t5,35,11.5: }}$	232.8	1.56	27.4	35.9	43.8	-7.9	-2.1	-5.8
$\mathrm{dL}_{\text {t5,37,11.5: }}$	232.8	1.56	28.9	36.0	45.3	-9.3	-2.1	-7.3
dL ${ }_{\text {t5,39,11.5: }}$	232.8	1.56	27.7	34.9	44.1	-9.2	-2.1	-7.2
dLt5,40,11.5:	232.8	1.56	27.6	35.0	44.0	-9.0	-2.1	-6.9
$\mathrm{dL}_{\text {t5,45,11.5: }}$	232.8	1.56	26.7	35.8	43.1	-7.3	-2.1	-5.2
$\mathrm{dL}_{\text {t5,46,11.5: }}$	232.8	1.56	28.6	35.3	45.0	-9.7	-2.1	-7.6
$\mathrm{dL}_{\text {t5,49,11.5: }}$	232.8	1.56	28.0	35.0	44.5	-9.5	-2.1	-7.4
$\mathrm{dL}_{\text {t5,50,11.5: }}$	232.8	1.56	26.6	33.8	43.0	-9.2	-2.1	-7.1
dLt5,56,11.5:	232.8	1.56	27.4	34.3	43.8	-9.6	-2.1	-7.5
$\mathrm{dL}_{6,54,11.5}$:	257.8	1.56	29.9	39.6	46.3	-6.7	-2.1	-4.6
$\mathrm{dL}_{\mathrm{t}_{7,3,11,5} \text { : }}$	307.8	1.56	28.2	37.1	44.8	-7.7	-2.1	-5.6
$\mathrm{dL}_{\text {t7,4,11.5: }}$	309.4	1.56	26.4	34.0	43.0	-9.0	-2.1	-6.9
$\mathrm{dL}_{\text {t7,9,11.5: }}$	307.8	1.56	27.0	33.1	43.6	-10.5	-2.1	-8.4
dLt7,10,11.5:	307.8	1.56	26.1	35.7	42.7	-7.0	-2.1	-4.9
$\mathrm{dL}_{\text {t7, 13,11.5: }}$	309.4	1.56	26.2	37.0	42.8	-5.8	-2.1	-3.7
dLt7,35,11.5:	325.0	1.56	25.7	32.0	42.2	-10.3	-2.1	-8.1
$\mathrm{dL}_{\text {t7,36,11.5: }}$	325.0	1.56	26.3	32.7	42.9	-10.2	-2.1	-8.1
$\mathrm{dL}_{\text {t7,42,11.5: }}$	325.0	1.56	25.9	35.6	42.5	-6.9	-2.1	-4.7
$\mathrm{dL}_{\text {t7,43,11.5: }}$	325.0	1.56	27.6	35.7	44.1	-8.5	-2.1	-6.3
$\mathrm{dL}_{\text {t7, 52,11.5: }}$	325.0	1.56	26.9	33.8	43.5	-9.7	-2.1	-7.6
dLt7,55,11.5:	325.0	1.56	26.7	32.8	43.3	-10.4	-2.1	-8.3
dL L8, $17,11.5^{\text {P }}$	7997.4	1.56	-16.6	-10.6	12.7	-23.3	-5.0	-18.3
$\mathrm{dL}_{\text {t8,19,11.5: }}$	7978.6	1.56	-16.5	-10.3	12.7	-23.1	-5.0	-18.1
$\mathrm{dL}_{\text {88,33,11.5: }}$	8013.0	1.56	-16.6	-9.2	12.7	-21.8	-5.0	-16.8
dL $\mathrm{L}_{8,49,11.5}$:	7916.1	1.56	-16.7	-10.6	12.5	-23.1	-5.0	-18.1
dLti8,51,11.5:	7988.0	1.56	-16.9	-10.8	12.4	-23.2	-5.0	-18.2

BIN 11.5: Tonal components determined - Compact

Spectrum	$\mathrm{f}_{\mathbf{T}}$	dLta, ${ }_{\text {, }}$	$\mathrm{f}_{\mathbf{T}}$	dLtn, $\mathrm{j}_{\text {, }}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	dLtn, ${ }_{\text {, }}$	$\mathrm{f}_{\mathbf{T}}$	dLtn, ${ }_{\text {, }}$ k	$\mathrm{f}_{\mathbf{T}}$	dLtn,j,k
\#\#	[Hz]	[dB]										
1	70.3	-1.9	---	---	142.2	-3.9	---	---	232.8	-8.6	---	---
2	73.4	-0.2	---	---	145.3	-7.8	---	---	---	---	---	---
3	73.4	-4.0	---	---	142.2	-0.1	---	---	232.8	-8.1	---	---
4	75.0	-0.7	---	---	---	---	175.0	-5.3	---	---	---	---
5	71.9	-1.0	---	---	---	---	175.0	-4.6	232.8	-8.0	---	---
6	84.4	-3.3	---	---	---	---	175.0	-3.7	232.8	-9.1	---	---
7	82.8	-10.0	---	---	---	---	175.0	-9.9	---	---	---	---
8	71.9	-5.9	---	---	142.2	-5.5	---	---	---	---	---	---
9	71.9	-8.8	---	---	142.2	-2.4	---	---	232.8	-9.7	---	---
10	70.3	-3.4	---	---	---	---	175.0	-5.8	232.8	-9.1	---	---
11	71.9	-3.4	---	---	143.8	-4.0	---	---	232.8	-9.3	--	---
12	---	---	115.6	-6.5	142.2	-2.5	---	---	232.8	-9.1	---	---
13	70.3	-5.6	---	---	140.6	-0.8	---	---	232.8	-9.8	---	---
14	71.9	-9.9	---	---	142.2	-0.5	---	---	232.8	-10.1	---	---
15	73.4	-4.6	---	---	---	---	---	---	---	---	---	---
16	71.9	-10.3	---	---	---	---	175.0	-5.8	232.8	-8.1	---	---
17	71.9	-6.3	---	---	---	---	175.0	-6.8	---	---	---	---
18	71.9	-8.5	---	---	---	---	175.0	-7.1	---	---	---	---
19	---	---	---	---	---	---	175.0	-9.6	---	---	---	---

NOISE

Windlectric Inc.
Page 101 of 112
Amherst Island Wind Project Report 01800287.007
Acoustic Test Report, WTG S29

20	75.0	-5.5	---	---	---	---	175.0	-7.1	---	---	---	---
21	71.9	-6.1	---	---	---	---	175.0	-9.8	---	---	---	---
22	71.9	-4.4	---	---	---	---	175.0	-5.1	---	---	---	---
23	71.9	-3.0	---	---	142.2	-4.1	---	---	---	---	---	---
24	73.4	-3.6	---	---	---	---	175.0	-5.5	232.8	-9.3	---	---
25	---	---	106.3	-8.8	---	---	175.0	-6.8	232.8	-8.6	---	---
26	71.9	-0.7	---	---	---	---	175.0	-1.9	232.8	-9.4	---	---
27	70.3	-2.7	---	---	142.2	-0.7	---	---	232.8	-8.8	---	---
28	68.8	-4.7	---	---	---	---	175.0	-6.7	---	---	---	---
29	75.0	-6.2	---	---	---	---	175.0	-4.7	---	---	---	---
30	73.4	-3.3	---	---	148.4	-8.5	---	---	---	---	---	---
31	71.9	-7.7	---	---	---	---	---	---	---	---	---	---
32	---	---	---	---	142.2	-3.2	---	---	---	---	---	---
33	---	---	---	---	140.6	-10.0	---	---	---	---	---	---
34	71.9	-6.4	---	---	---	---	175.0	-8.5	232.8	-9.1	---	---
35	71.9	-5.7	---	---	142.2	-2.5	---	---	232.8	-7.9	---	---
36	70.3	-7.0	---	---	140.6	-3.4	---	---	---	---	---	---
37	73.4	-5.7	---	---	---	---	175.0	-6.1	232.8	-9.3	---	---
38	---	---	---	---	---	---	---	---	---	---	---	---
39	71.9	-4.7	---	---	142.2	-1.6	---	---	232.8	-9.2	---	---
40	---	---	---	---	---	---	175.0	-4.4	232.8	-9.0	---	---
41	71.9	-8.1	---	---	142.2	-8.5	---	---	---	---	---	---
42	68.8	-4.9	---	---	---	---	---	---	---	---	---	---
43	---	---	101.6	-6.8	---	---	---	---	---	---	---	---
44	87.5	-7.7	---	---	---	---	---	---	---	---	---	---
45	85.9	0.6	---	---	142.2	-4.4	---	---	232.8	-7.3	---	---
46	71.9	-5.0	---	---	---	---	175.0	-5.6	232.8	-9.7	---	---
47	75.0	-9.5	---	---	---	---	---	---	---	---	---	---
48	71.9	-8.2	---	---	---	-	---	---	---	---	---	---
49	73.4	-4.2	---	---	---	---	175.0	-4.3	232.8	-9.5	---	---
50	71.9	-5.0	---	---	---	---	175.0	-3.9	232.8	-9.2	---	---
51	71.9	-6.5	---	---	---	---	---	---	---	---	---	---
52	73.4	-8.5	---	---	---	---	---	---	---	---	---	---
53	71.9	-4.0	---	---	---	---	175.0	-10.2	---	---	---	---
54	71.9	-4.7	---	---	---	---	---	---	---	---	257.8	-6.7
55	71.9	-6.5	---	---	142.2	-1.7	---	---	---	---	---	---
56	---	---	---	---	---	---	---	---	232.8	-9.6	---	---
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL}_{\mathrm{k}}[\mathrm{dB}]$	72.8	-5.2	115.2	-14.9	142.3	-7.2	175.0	-8.9	232.8	-11.6	257.8	-15.9
$\mathrm{L}_{\mathrm{a}}[\mathrm{dB}]$		-2.0		-2.0		-2.0		-2.0		-2.1		-2.1
$\mathrm{dL}_{\mathrm{a}, \mathrm{k}}[\mathrm{dB}]$		-3.2		-12.9		-5.1		-6.9		-9.5		-13.8
$\mathrm{K}_{\text {TN }}$ [dB]		0		0		0		0		0		0

2

BIN 11.5: Narrowband spectrum

BIN 11.5: Narrowband spectrum

Windlectric Inc.

Windlectric Inc.
Page 104 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29
January 9, 2019

BIN 12: Tonal components determined								
	Frequency	delta f	$\mathrm{L}_{\text {pn,avg, }, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pt} \text {, , , }}$	$\mathrm{L}_{\mathrm{pr}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\text {aj, }, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dLtil, 12:	71.9	1.56	25.3	35.1	41.6	-6.5	-2.0	-4.5
dL ${ }_{\text {ti, } 2,12}$:	71.9	1.56	26.2	34.3	42.5	-8.2	-2.0	-6.2
$\mathrm{dL}_{\text {t1, 3, 12: }}$	70.3	1.56	23.4	35.2	39.7	-4.5	-2.0	-2.5
dLti,4,12:	70.3	1.56	22.2	36.5	38.5	-2.0	-2.0	0.0
$\mathrm{dL}_{\text {t1, } 6,12}$:	71.9	1.56	26.9	37.7	43.2	-5.5	-2.0	-3.5
dLti,8,12:	73.4	1.56	26.5	34.1	42.8	-8.8	-2.0	-6.8
$\mathrm{dL}_{\mathrm{t} 1,9,12}$:	70.3	1.56	24.1	34.0	40.4	-6.4	-2.0	-4.4
dL ${ }_{\text {ti,10,12: }}$	71.9	1.56	24.6	36.9	40.9	-4.0	-2.0	-2.0
dL ${ }_{\text {t1,11,12: }}$	73.4	1.56	24.3	36.5	40.6	-4.0	-2.0	-2.0
$\mathrm{dL}_{\mathrm{t} 1,12,12}$	70.3	1.56	22.1	34.8	38.4	-3.5	-2.0	-1.5
$\mathrm{dL}_{\mathrm{t} 1,13,12}$:	71.9	1.56	23.8	39.3	40.1	-0.8	-2.0	1.2
$\mathrm{dL}_{\mathrm{t} 1,14,12}$	70.3	1.56	24.9	33.5	41.2	-7.6	-2.0	-5.6
$\mathrm{dL}_{\mathrm{t} 1,15,12}$	76.6	1.56	26.5	34.5	42.8	-8.3	-2.0	-6.3
dL ${ }_{\text {t1,16,12: }}$	75.0	1.56	26.7	34.9	43.0	-8.1	-2.0	-6.1
$\mathrm{dL}_{\mathrm{t} 1,17,12}$:	75.0	1.56	26.6	37.7	42.9	-5.3	-2.0	-3.3
dL ${ }_{\text {ti,18,12: }}$	71.9	1.56	24.1	37.9	40.4	-2.6	-2.0	-0.6
$\mathrm{dL}_{\mathrm{t} 1,19,12}$:	71.9	1.56	24.2	35.5	40.5	-4.9	-2.0	-2.9
dLti,20,12:	75.0	1.56	24.1	36.2	40.4	-4.3	-2.0	-2.3
dL ${ }_{\text {t1,21,12: }}$	71.9	1.56	24.9	38.6	41.2	-2.6	-2.0	-0.6
$\mathrm{dL}_{\mathrm{t} 1,22,12}$:	71.9	1.56	24.5	37.9	40.8	-2.9	-2.0	-0.9
dL ${ }_{\text {ti,23,12: }}$	71.9	1.56	25.3	36.0	41.6	-5.6	-2.0	-3.6
dL ${ }_{\text {t1,24,12: }}$	71.9	1.56	24.2	38.2	40.5	-2.3	-2.0	-0.3
$\mathrm{dL}_{\mathrm{t} 1,25,12}$:	73.4	1.56	24.5	35.5	40.8	-5.3	-2.0	-3.3
$\mathrm{dL}_{\mathrm{t} 1,26,12}$	71.9	1.56	22.9	34.5	39.2	-4.7	-2.0	-2.7
dL ${ }_{\text {t1,27,12: }}$	70.3	1.56	24.2	34.2	40.5	-6.3	-2.0	-4.3
dLti,29,12:	71.9	1.56	23.9	39.2	40.2	-1.0	-2.0	1.0
$\mathrm{dL}_{\mathrm{t} 1,30,12}$	70.3	1.56	22.6	37.1	38.9	-1.8	-2.0	0.2
$\mathrm{dL}_{\mathrm{t} 1,31,12}$:	71.9	1.56	23.8	36.3	40.1	-3.8	-2.0	-1.8
$\mathrm{dL}_{\mathrm{t} 1,32,12}$	71.9	1.56	26.8	38.0	43.1	-5.2	-2.0	-3.2
dL ${ }_{\text {t1,33,12: }}$	73.4	1.56	25.9	37.4	42.2	-4.8	-2.0	-2.8
dL ${ }_{\text {t1,34,12: }}$	71.9	1.56	23.3	35.8	39.6	-3.9	-2.0	-1.9
$\mathrm{dL}_{\mathrm{t} 1,35,12}$	71.9	1.56	23.2	37.1	39.5	-2.4	-2.0	-0.4
dL ${ }_{\text {t2, }, 12}$:	140.6	1.56	26.8	41.8	43.1	-1.3	-2.0	0.7
$\mathrm{dL}_{\text {L2,9,12: }}$	142.2	1.56	27.0	38.5	43.3	-4.7	-2.0	-2.7
$\mathrm{dL}_{\mathrm{t} 2,14,12}$:	139.1	1.56	27.7	39.7	44.0	-4.3	-2.0	-2.3
$\mathrm{dL}_{\mathrm{t} 2,24,12}$:	143.8	1.56	27.6	42.8	43.9	-1.1	-2.0	0.9
dL ${ }_{\text {t2, 26,12: }}$	142.2	1.56	25.9	42.3	42.2	0.1	-2.0	2.1
dLt $2,28,12$:	142.2	1.56	28.0	41.8	44.3	-2.5	-2.0	-0.5
dL ${ }_{\text {L2,32,12: }}$	143.8	1.56	28.7	40.3	45.0	-4.6	-2.0	-2.6
$\mathrm{dL}_{\mathrm{t} 2,35,12}$:	143.8	1.56	27.2	44.4	43.5	0.9	-2.0	2.9
$\mathrm{dL}_{\text {L3,1,12: }}$	175.0	1.56	28.2	37.2	44.5	-7.3	-2.0	-5.3
dLt3,2,12:	175.0	1.56	28.3	39.5	44.6	-5.1	-2.0	-3.1
dL ${ }_{\text {+ } 3,4,12:}$	175.0	1.56	26.6	38.3	42.9	-4.6	-2.0	-2.6
$\mathrm{dL}_{\text {L3,7,12: }}$	175.0	1.56	29.7	38.2	46.0	-7.8	-2.0	-5.7
$\mathrm{dL}_{\mathrm{t} 3,8,12}$:	175.0	1.56	28.8	36.6	45.1	-8.5	-2.0	-6.5
$\mathrm{dL}_{\mathrm{t}, 10,12}$:	175.0	1.56	27.4	35.9	43.7	-7.8	-2.0	-5.7
$\mathrm{dL}_{\mathrm{t} 3,11,12}$:	175.0	1.56	27.6	35.3	43.9	-8.5	-2.0	-6.5
dL ${ }_{\text {t } 3,12,12}{ }^{\text {d }}$	175.0	1.56	26.7	37.1	43.0	-6.0	-2.0	-4.0
$\mathrm{dL}_{\mathrm{t}, 13,12}$:	175.0	1.56	27.6	38.7	43.9	-5.1	-2.0	-3.1
$\mathrm{dL}_{\mathrm{t} 3,15,12}$:	175.0	1.56	28.2	35.9	44.5	-8.6	-2.0	-6.6
$\mathrm{dL}_{\mathrm{t}, 17,12}$:	175.0	1.56	29.1	37.8	45.4	-7.6	-2.0	-5.6

Windlectric Inc.
Page 105 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29

$\mathrm{dL}_{\mathrm{t} 3,18,12}$:	175.0	1.56	28.6	41.1	44.9	-3.8	-2.0	-1.8
dL ${ }_{\text {t3,19,12: }}$	175.0	1.56	27.9	42.1	44.2	-2.2	-2.0	-0.1
$\mathrm{dL}_{\mathrm{t}, 2,2,12}$:	175.0	1.56	28.0	37.7	44.3	-6.6	-2.0	-4.6
dL ${ }_{\text {t3,21,12: }}$	175.0	1.56	27.8	40.4	44.1	-3.7	-2.0	-1.7
$\mathrm{dL}_{\mathrm{t}, 22,12}$:	175.0	1.56	28.3	42.2	44.6	-2.3	-2.0	-0.3
dL ${ }_{\text {t3,23,12: }}$	175.0	1.56	28.4	40.9	44.7	-3.8	-2.0	-1.8
dL ${ }_{\text {t3,27,12: }}$	175.0	1.56	27.5	38.8	43.8	-5.0	-2.0	-3.0
$\mathrm{dL}_{\mathrm{t}, 29,12}$:	175.0	1.56	27.5	39.2	43.8	-4.6	-2.0	-2.6
dL ${ }_{\text {t } 3,30,12:}$	175.0	1.56	26.9	39.2	43.2	-4.0	-2.0	-2.0
dL $\mathrm{d}_{\mathrm{t}, 31,12}$:	175.0	1.56	27.0	36.5	43.3	-6.8	-2.0	-4.8
$\mathrm{dL}_{\mathrm{t} 3,33,12}$:	175.0	1.56	29.3	40.6	45.6	-5.0	-2.0	-2.9
$\mathrm{dL}_{\mathrm{t} 3,34,12}$:	175.0	1.56	27.1	41.6	43.4	-1.8	-2.0	0.2
$\mathrm{dL}_{44,1,12}$:	232.8	1.56	27.5	33.6	44.0	-10.4	-2.1	-8.3
dLt4,2,12:	232.8	1.56	27.4	34.7	43.8	-9.1	-2.1	-7.0
dL ${ }_{\text {t4, }}$, 12:	232.8	1.56	27.0	33.7	43.4	-9.7	-2.1	-7.7
$\mathrm{dL}_{\mathrm{t} 4,4,12}$:	232.8	1.56	26.4	34.4	42.8	-8.4	-2.1	-6.4
dL ${ }_{\text {t } 4,5,12:}$	232.8	1.56	27.8	36.2	44.2	-8.0	-2.1	-6.0
$\mathrm{dL}_{44,6,12}$	232.8	1.56	27.7	34.6	44.1	-9.5	-2.1	-7.4
dLta,7,12:	232.8	1.56	28.3	35.7	44.7	-9.0	-2.1	-6.9
dL ${ }_{\text {t } 4,9,12:}$	232.8	1.56	26.9	34.9	43.4	-8.4	-2.1	-6.4
dLt4,12,12:	232.8	1.56	26.4	33.4	42.9	-9.5	-2.1	-7.4
$\mathrm{dL}_{\mathrm{t} 4,15,12}$:	232.8	1.56	27.8	34.1	44.2	-10.1	-2.1	-8.1
$\mathrm{dL}_{\mathrm{t} 4,18,12}$:	232.8	1.56	27.6	34.3	44.0	-9.8	-2.1	-7.7
$\mathrm{dL}_{\mathrm{t} 4,20,12}$:	232.8	1.56	27.2	33.7	43.6	-9.9	-2.1	-7.9
$\mathrm{dL}_{\mathrm{t} 4,21,12}$:	232.8	1.56	27.6	34.1	44.0	-9.9	-2.1	-7.8
dLt4,22,12:	232.8	1.56	27.7	34.0	44.2	-10.2	-2.1	-8.1
dLt4,25,12:	232.8	1.56	26.4	33.6	42.8	-9.2	-2.1	-7.1
$\mathrm{dL}_{\mathrm{t} 4,26,12}$:	232.8	1.56	25.9	33.9	42.4	-8.5	-2.1	-6.4
$\mathrm{dL}_{\mathrm{t} 4,31,12}$:	232.8	1.56	26.8	33.6	43.2	-9.6	-2.1	-7.5
dL ${ }_{\text {t4,34,12: }}$	232.8	1.56	27.1	33.9	43.5	-9.6	-2.1	-7.5
dLt5,1,12:	309.4	1.56	26.9	34.5	43.5	-8.9	-2.1	-6.8
dLt5,4,12:	307.8	1.56	26.1	36.1	42.7	-6.6	-2.1	-4.5
dL ${ }_{\text {t5,24,12: }}$	325.0	1.56	26.6	39.0	43.2	-4.1	-2.1	-2.0
dL ${ }_{\text {t5,25,12: }}$	323.5	1.56	25.8	33.7	42.4	-8.7	-2.1	-6.6
$\mathrm{dL}_{\text {t5,26,12: }}$	325.0	1.56	25.3	33.3	41.8	-8.5	-2.1	-6.3
dL ${ }_{\text {t5,27,12: }}$	323.5	1.56	26.5	35.2	43.0	-7.8	-2.1	-5.7
dL ${ }_{\text {t5,32,12: }}$	325.0	1.56	26.5	34.0	43.1	-9.1	-2.1	-7.0
dLt6,5,12:	7966.1	1.56	-17.4	-11.1	11.9	-22.9	-5.0	-17.9
dL t6,6,12: $^{\text {d }}$	8025.5	1.56	-17.2	-11.1	12.1	-23.2	-5.0	-18.2
$\mathrm{dL}_{\text {t } 6,9,12}$:	8061.4	1.56	-17.7	-11.5	11.7	-23.1	-5.0	-18.1

BIN 12: Tonal components determined - Compact

Spectrum	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{j} \text { k }}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\mathrm{ta}, \mathrm{j}, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{j}, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$
\#\#	[Hz]	[dB]	[Hz]	[dB]								
1	71.9	-6.5	---	---	175.0	-7.3	232.8	-10.4	309.4	-8.9	---	---
2	71.9	-8.2	---	---	175.0	-5.1	232.8	-9.1	---	---	---	---
3	70.3	-4.5	140.6	-1.3	---	---	232.8	-9.7	---	---	---	---
4	70.3	-2.0	---	---	175.0	-4.6	232.8	-8.4	307.8	-6.6	---	---
5	---	---	---	---	---	---	232.8	-8.0	---	---	7966.1	-22.9
6	71.9	-5.5	---	---	---	---	232.8	-9.5	---	---	8025.5	-23.2
7	---	---	---	---	175.0	-7.8	232.8	-9.0	---	---	---	---
8	73.4	-8.8	---	---	175.0	-8.5	---	---	---	---	---	---
9	70.3	-6.4	142.2	-4.7	---	---	232.8	-8.4	---	---	8061.4	-23.1
10	71.9	-4.0	---	---	175.0	-7.8	---	---	---	---	---	---

NOISE

Windlectric Inc.
Page 106 of 112
Amherst Island Wind Project

11	73.4	-4.0	---	---	175.0	-8.5	---	---	---	---	---	---
12	70.3	-3.5	---	---	175.0	-6.0	232.8	-9.5	---	---	---	---
13	71.9	-0.8	---	---	175.0	-5.1	---	---	---	---	---	---
14	70.3	-7.6	139.1	-4.3	---	---	---	---	---	---	---	---
15	76.6	-8.3	---	---	175.0	-8.6	232.8	-10.1	---	---	---	---
16	75.0	-8.1	---	---	---	---	---	---	---	---	---	---
17	75.0	-5.3	---	---	175.0	-7.6	---	---	---	---	---	---
18	71.9	-2.6	---	---	175.0	-3.8	232.8	-9.8	---	---	---	---
19	71.9	-4.9	---	---	175.0	-2.2	---	---	---	---	---	---
20	75.0	-4.3	---	---	175.0	-6.6	232.8	-9.9	---	---	---	---
21	71.9	-2.6	---	---	175.0	-3.7	232.8	-9.9	---	---	---	---
22	71.9	-2.9	---	---	175.0	-2.3	232.8	-10.2	---	---	---	---
23	71.9	-5.6	---	---	175.0	-3.8	---	---	---	---	---	---
24	71.9	-2.3	143.8	-1.1	---	---	---	---	325.0	-4.1	---	---
25	73.4	-5.3	--	---	---	---	232.8	-9.2	323.5	-8.7	---	---
26	71.9	-4.7	142.2	0.1	---	---	232.8	-8.5	325.0	-8.5	---	---
27	70.3	-6.3	---	---	175.0	-5.0	---	---	323.5	-7.8	---	---
28	---	---	142.2	-2.5	---	---	---	---	---	---	---	---
29	71.9	-1.0	---	---	175.0	-4.6	---	---	---	---	---	---
30	70.3	-1.8	---	---	175.0	-4.0	---	---	---	---	---	---
31	71.9	-3.8	---	---	175.0	-6.8	232.8	-9.6	---	---	---	---
32	71.9	-5.2	143.8	-4.6	---	---	---	---	325.0	-9.1	---	---
33	73.4	-4.8	---	---	175.0	-5.0	---	---	---	---	---	---
34	71.9	-3.9	---	---	175.0	-1.8	232.8	-9.6	---	---	---	---
35	71.9	-2.4	143.8	0.9	---	---	---	---	---	---	---	---
36	---	---	---	---	---	---	---	---	---	---	---	---
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL}_{\mathrm{k}}[\mathrm{dB}]$	72.1	-4.6	141.0	-7.8	175.0	-6.8	232.8	-11.6	311.4	-12.7	7970.4	-27.8
$\mathrm{L}_{\text {a }}$ [dB]		-2.0		-2.0		-2.0		-2.1		-2.1		-5.0
dLa, ${ }_{\text {, }}$ [dB]		-2.6		-5.7		-4.8		-9.5		-10.6		-22.7
$\mathrm{K}_{\text {ts }}$ [dB]		0		0		0		0		0		0

BIN 12: Narrowband spectrum

BIN 12: Narrowband spectrum

Windlectric Inc.

Windlectric Inc.
Page 109 of 112
Amherst Island Wind Project
Report 01800287.007
Acoustic Test Report, WTG S29
January 9, 2019

BIN 12.5: Tonal components determined								
	Frequency	delta f	$\mathrm{L}_{\mathrm{pn}, \mathrm{avg}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pt}, \mathrm{j}, \mathrm{k}}$	$\mathrm{L}_{\mathrm{pr}, \mathrm{j}, \mathrm{k}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	L_{a}	$\mathrm{dL}_{\text {aj, }, \mathrm{k}}$
	[Hz]	[Hz]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
dL $\mathrm{t}_{1,1,12,5}$	175.0	1.56	29.9	36.3	46.2	-9.8	-2.0	-7.8
$\mathrm{dL}_{\mathrm{t} 1,4,12,5}$	175.0	1.56	28.5	38.5	44.8	-6.3	-2.0	-4.2
$\mathrm{dL}_{\text {t1, 5,12.5: }}$	175.0	1.56	28.2	39.1	44.5	-5.4	-2.0	-3.4
$\mathrm{dL}_{\mathrm{t} 1,6,12,5}$	175.0	1.56	28.1	41.1	44.4	-3.3	-2.0	-1.3
$\mathrm{dL}_{\mathrm{t} 1,7,12,5}$	175.0	1.56	25.9	38.9	42.2	-3.3	-2.0	-1.3
d $\mathrm{L}_{11,8,12,5}$	175.0	1.56	27.4	37.7	43.7	-6.0	-2.0	-3.9
$\mathrm{dL}_{\mathrm{t} 1,9,12,5}$	175.0	1.56	28.0	37.1	44.3	-7.3	-2.0	-5.2
$\mathrm{dL}_{\text {t1,11,12,5: }}$	175.0	1.56	25.8	35.5	42.1	-6.6	-2.0	-4.6
$\mathrm{dL}_{\text {t1,12,12,5: }}$	175.0	1.56	27.5	37.8	43.8	-6.0	-2.0	-4.0
$\mathrm{dL}_{\mathrm{t}_{1}, 13,12.5}$	175.0	1.56	28.1	41.4	44.4	-3.0	-2.0	-1.0
$\mathrm{dL}_{\text {t1,15,12.5: }}$	175.0	1.56	27.7	40.5	44.0	-3.5	-2.0	-1.5
$\mathrm{dL}_{\mathrm{t}, 11,12,5}$	175.0	1.56	27.9	40.2	44.2	-4.0	-2.0	-2.0
$\mathrm{dL}_{\text {t1,18,12,5: }}$	175.0	1.56	27.5	41.9	43.8	-1.9	-2.0	0.2
$\mathrm{dL}_{\mathrm{t}, 21,12,5}$	175.0	1.56	28.5	37.2	44.8	-7.6	-2.0	-5.6
$\mathrm{dL}_{\text {t1,22,12.5: }}$	175.0	1.56	27.4	34.4	43.7	-9.3	-2.0	-7.3
dLti,23,12.5:	175.0	1.56	27.8	37.5	44.1	-6.5	-2.0	-4.5
$\mathrm{dL}_{\mathrm{t} 2,2,12,5}$:	143.8	1.56	28.8	42.3	45.1	-2.8	-2.0	-0.8
dL $\mathrm{L}_{\mathrm{t} 2,3,12,5:}$	143.8	1.56	27.2	39.2	43.5	-4.4	-2.0	-2.3
$\mathrm{dL}_{\mathrm{t}_{2,14,12.5}}$	143.8	1.56	28.1	44.1	44.4	-0.3	-2.0	1.7
$\mathrm{dL}_{\mathrm{t} 2,19,12,5}$	142.2	1.56	27.0	41.6	43.3	-1.7	-2.0	0.3
$\mathrm{dL}_{\text {L2, 20,12.5: }}$	140.6	1.56	27.8	40.9	44.1	-3.1	-2.0	-1.1
dL $\mathrm{L}_{\mathrm{t}, 1,12,5}$	175.0	1.56	29.9	36.3	46.2	-9.8	-2.0	-7.8
dL $\mathrm{L}_{\text {t, 4, 12,5: }}$	175.0	1.56	28.5	38.5	44.8	-6.3	-2.0	-4.2
dL ${ }_{\text {t } 3,5,12.5}$:	175.0	1.56	28.2	39.1	44.5	-5.4	-2.0	-3.4
$\mathrm{dL}_{\mathrm{t} 3,6,12.5}$:	175.0	1.56	28.1	41.1	44.4	-3.3	-2.0	-1.3
$\mathrm{dL}_{\mathrm{t3}, 7,12.5}$:	175.0	1.56	25.9	38.9	42.2	-3.3	-2.0	-1.3
dL ${ }_{\text {t3, }, 12,5}{ }^{\text {a }}$	175.0	1.56	27.4	37.7	43.7	-6.0	-2.0	-3.9
dL ${ }_{\text {t }}$,9,12.5:	175.0	1.56	28.0	37.1	44.3	-7.3	-2.0	-5.2
dLti3,11,12.5:	175.0	1.56	25.8	35.5	42.1	-6.6	-2.0	-4.6
$\mathrm{dL}_{\text {t3,12,12,5: }}$	175.0	1.56	27.5	37.8	43.8	-6.0	-2.0	-4.0
$\mathrm{dL}_{\text {t3,13,12,5: }}$	175.0	1.56	28.1	41.4	44.4	-3.0	-2.0	-1.0
$\mathrm{dL}_{\text {t3,15,12.5: }}$	175.0	1.56	27.7	40.5	44.0	-3.5	-2.0	-1.5
$\mathrm{dL}_{\text {t3,16,12.5: }}$	175.0	1.56	27.9	40.2	44.2	-4.0	-2.0	-2.0
$\mathrm{dL}_{\text {t3,18,12.5: }}$	175.0	1.56	27.5	41.9	43.8	-1.9	-2.0	0.2
dL ${ }_{\text {3 } 3,21,12.5}$	175.0	1.56	28.5	37.2	44.8	-7.6	-2.0	-5.6
dL ${ }_{\text {+3,22,12.5: }}$	175.0	1.56	27.4	34.4	43.7	-9.3	-2.0	-7.3
dL ${ }_{\text {ti, 23,12.5: }}$	175.0	1.56	27.8	37.5	44.1	-6.5	-2.0	-4.5
$\mathrm{dL}_{44,5,12,5}$	232.8	1.56	27.8	36.4	44.3	-7.9	-2.1	-5.8
dL ${ }_{\text {t4, } 6,12.5}$:	232.8	1.56	27.7	35.3	44.1	-8.8	-2.1	-6.8
dLti, ${ }^{\text {d,12.5: }}$	232.8	1.56	26.2	32.5	42.7	-10.1	-2.1	-8.1
dL $\mathrm{L}_{4}, 8,12.5$:	232.8	1.56	26.8	35.3	43.2	-7.9	-2.1	-5.8
$\mathrm{dL}_{\text {t4,12,12.5: }}$	232.8	1.56	27.2	34.6	43.6	-9.0	-2.1	-6.9
$\mathrm{dL}_{44,13,12.5}$	232.8	1.56	27.6	33.9	44.0	-10.1	-2.1	-8.0
$\mathrm{dL}_{44,14,12.5}$	232.8	1.56	28.4	35.5	44.8	-9.3	-2.1	-7.2
dLt4,15,12.5:	232.8	1.56	27.6	35.4	44.0	-8.6	-2.1	-6.6
$\mathrm{dL}_{44,17,12.5}$	232.8	1.56	27.6	35.1	44.1	-8.9	-2.1	-6.9
$\mathrm{dL}_{44,18,12.5}$	232.8	1.56	27.8	35.7	44.2	-8.5	-2.1	-6.4
dLta, 19,12.5:	232.8	1.56	26.6	33.4	43.0	-9.7	-2.1	-7.6
dL ${ }_{\text {t4,20,12.5: }}$	232.8	1.56	27.4	33.7	43.8	-10.1	-2.1	-8.1
dLti4,22,12.5:	232.8	1.56	27.4	35.2	43.8	-8.6	-2.1	-6.5
dL ${ }_{\text {t5,2,12,5: }}$	309.4	1.56	26.7	35.8	43.3	-7.5	-2.1	-5.3

ACOUSTICS
NOISE

Windlectric Inc.

$\mathrm{dL}_{t 5,3,12.5:}$	307.8	1.56	26.5	35.6	43.0	-7.4	-2.1	-5.3
$\mathrm{dL}_{t 5,4,12.5:}$	309.4	1.56	27.0	35.1	43.6	-8.5	-2.1	-6.4
$\mathrm{dL}_{t 5,6,12.5:}$	309.4	1.56	26.8	34.5	43.4	-8.9	-2.1	-6.8
$\mathrm{dL}_{t 5,7,12.5:}$	309.4	1.56	25.8	33.2	42.4	-9.2	-2.1	
$\mathrm{dL}_{t 5,8,12.5:}$	309.4	1.56	26.1	33.6	42.6	-9.0	-2.1	-7.0

BIN 12.5: Tonal components determined-Compact											
Spectrum	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\mathrm{ta}, \mathrm{j}, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\text {T }}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	$\mathrm{f}_{\mathbf{T}}$	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	f_{T}	$\mathrm{dL}_{\text {tn, }, \mathrm{k}}$	
\#\#	[Hz]	[dB]									
1	---	---	---	---	175.0	-9.8	---	---	---	---	
2	71.9	-5.4	143.8	-2.8	---	---	---	---	309.4	-7.5	
3	71.9	-3.9	143.8	-4.4	---	---	---	---	307.8	-7.4	
4	76.6	-6.7	---	---	175.0	-6.3	---	---	309.4	-8.5	
5	73.4	-4.9	---	---	175.0	-5.4	232.8	-7.9	---	---	
6	71.9	-2.8	---	---	175.0	-3.3	232.8	-8.8	309.4	-8.9	
7	71.9	0.7	---	---	175.0	-3.3	232.8	-10.1	309.4	-9.2	
8	71.9	-3.4	---	---	175.0	-6.0	232.8	-7.9	309.4	-9.0	
9	71.9	-4.4	---	---	175.0	-7.3	---	---	---	---	
10	73.4	-4.4	---	---	---	---	---	---	---	---	
11	71.9	1.1	---	---	175.0	-6.6	---	---	---	---	
12	73.4	-4.2	---	---	175.0	-6.0	232.8	-9.0	---	---	
13	73.4	-4.1	---	---	175.0	-3.0	232.8	-10.1	---	---	
14	71.9	-0.5	143.8	-0.3	---	---	232.8	-9.3	---	---	
15	71.9	-1.5	---	---	175.0	-3.5	232.8	-8.6	---	---	
16	71.9	-2.5	---	---	175.0	-4.0	---	---	---	---	
17	78.1	-5.7	---	---	---	---	232.8	-8.9	---	---	
18	71.9	-1.6	---	---	175.0	-1.9	232.8	-8.5	---	---	
19	73.4	-4.7	142.2	-1.7	---	---	232.8	-9.7	---	---	
20	70.3	-8.5	140.6	-3.1	---	---	232.8	-10.1	---	---	
21	73.4	-7.0	---	---	175.0	-7.6	---	---	---	---	
22	71.9	-2.1	---	---	175.0	-9.3	232.8	-8.6	---	---	
23	71.9	-0.7	---	---	175.0	-6.5	---	---	---	---	
$\mathrm{f}_{\mathrm{t}}[\mathrm{Hz}] \mid \mathrm{dL}_{\mathrm{k}}[\mathrm{dB}]$	72.7	-3.0	143.6	-8.3	175.0	-6.5	232.8	-10.9	309.3	-12.7	
$\mathrm{L}_{\mathrm{a}}[\mathrm{dB}]$		-2.0		-2.0		-2.0		-2.1		-2.1	
$\mathrm{dL}_{\mathrm{a}, \mathrm{k}}[\mathrm{dB}]$		-1.0		-6.3		-4.5		-8.8		-10.5	
$\mathrm{K}_{\text {tn }}$ [dB]		0		0		0		0		0	

BIN 12.5: Narrowband spectrum

BIN 12.5: Narrowband spectrum

[^0]: Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
 This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.
 Document stored as: Z:\Calibration Lab\Cal 2018\BNK4231_3010241_M1.doc

[^1]: Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
 This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.
 Document stored as: Z:\Calibration Lab\Mic 2018\GRAS40CD_224382_M1.doc

